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Abstract 

Single-species management objectives may not be consistent within mixed fisheries. They may lead 
species to unsafe situations, promote discarding of over-quota and/or misreporting of catches. We 
provide an algorithm for characterising bio-economic reference points for a mixed fishery as the 
steady-state solution of a dynamic optimal management problem. The optimisation problem takes 
into account: i) that species are fishing simultaneously in unselective fishing operations and ii) 
intertemporal discounting and fleet costs to relate reference points to discounted economic profits 
along optimal trajectories. We illustrate how the algorithm can be implemented by applying it to the 
European Northern Stock of Hake (Merluccius merluccius), where fleets also capture Northern 
megrim (Lepidorhombus whiffiagonis) and Northern anglerfish (Lophius piscatorius and Lophius 
budegassa). We find that optimal mixed management leads to a target reference point that is quite 
similar to the 2/3 of the Fmsy single-species (hake) target. Mixed management is superior to single-
species management because it leads the fishery to higher discounted profits with higher long-term 
SSB for all species. We calculate that the losses due to the use of the Fmsy single-species (hake) 
target in this mixed fishery account for 11.4% of total discounted profits.  

 

Keywords: optimisation in age-structured models, bio-economic reference points, mixed fisheries. 

Running title: Mixed fisheries reference points based on dynamic optimisation. 
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1.- Introduction 
 

The aim of this article is to characterise fishing reference points as the steady-state 
solution of a dynamic optimal management problem defined over an infinite-time horizon 
considering a mixed fishery and an age-structured population model based on Baranov’s 
catch equation (1918). 

Since Beverton and Holt (1957), target reference points have been one of the main 
tools used by fishery managers to make decisions about future catch options. Prominent 
among the classical “target reference points” are those associated with Maximum 
Sustainable Yield (MSY), such as Bmsy and Fmsy. The use of MSY reference points was 
criticised by Larkin (1977) in his famous paper An epitaph for the concept of maximum 
sustainable yield, where he identifies some situations where management based on MSY 
fails, e.g. mixed fisheries, multiespecies interactions and economic performance. The 
introduction of the “Precautionary Approach” to fisheries in the 90’s (Rio Summit, 1992), 
emphasised the use of “limit reference points” to constrain harvesting within safe 
biological limits. In other words, there are limits to exploitation (e.g. spawning stock 
biomass) below which it is considered that stock sustainability cannot be ensured or below 
which the likelihood of a negative outcome (e.g. stock collapse) is unacceptable.  MSY and 
the precautionary approach are unified in UN (1995) where Annex II, Point 7 says: “The 
fishing mortality rate which generates maximum sustainable yield should be regarded as a 
minimum standard for limit reference point”. The World Summit on Sustainable 
Development (WSSD) aims to maintain or restore stocks to levels that can produce MSY 
by 2015 (COFI, 2003), and indeed this is now the one of the main goals of fishery 
management. However, the deficiencies identified by Larkin (1977) continue to pose a 
challenge for fishery management. 

There are two important shortcomings in this classical reference point. The first one is 
that many fisheries are mixed fisheries, i.e. fleets target different species together. 
Therefore what may be “safe” for one stock may be “dangerous” for another stock caught 
together with it. In this regard, Mace (2001) points out that in a mixed fishery the reference 
target should be lower than the fishing mortality associated with the MSY, Fmsy. Moreover, 
single-species objectives may not be consistent with one another in mixed fisheries where 
species are caught simultaneously in relatively unselective fishing operations, and can lead 
to over-quota catches and misreporting of catches (Vinther et al, 2004; Rijnsdorp et al, 
2005; Mackinson et al. 2009; Baudron et al 2010; Reiss et al, 2010; Ulrich et al, 2011). 
Other studies as Agar and Sutinen (2004) also suggest that the failure to reconognize the 
mixed nature of the fisheries can have profound impacts on the success of the recovering 
strategies for fisheries in rebuilding process. 

The second shortcoming of the MSY reference point is that it is a time-independent, 
long-term strategy which is determined without taking into account the intertemporal 
aspects of economic variables. However, any economic assessment of future variables 
requires discounting to be introduced into the analysis (Koopmas 1960, Sumaila et al., 
2010, Duncan et al., 2011). In this sense, for years it was thought that targeting fishing 
mortality in order to maximise net present value (NPV) of profits (also called discounted 
profits) would cause stock depletion. However, Grafton et al. (2007) find that in practice 
the biomass associated with maximisation of discounted profits is higher than the biomass 
associated with MSY. This suggests that the use of reference points lower than Fmsy may be 
a win-win strategy: higher profits and safer biomass.  

Age-structured population models have been extensively used to assess fisheries, but 
they have not been used so often for computing optimal fishing mortality trajectories. Some 
exceptions are Hanneson (1975), Gurtin and Murphy (1981), Hoorwood and  Whittle 
(1986) and Hoorwood (1990), and more recently Grafton et al., (2006; 2007; 2010), Gröger 
et al. (2007) Kulmala et al. (2008),  Da Rocha et al. (2010), Da Rocha and Gutiérrez 
(2011), Dichmont et al. (2010), Kompas et al. (2010) and Tahvonen (2009).  

Economic assessment for mixed fishery management frequently focuses on single-
stock biological reference points (F or SSB targets). Once these targets have been set, 
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management rules based on them are proposed and the biological and economical impacts 
of those rules on other stocks (F or SSB) are evaluated (Kraak et al., 2008, Ulrich et al., 
2011). This approach has two main features: i) the selection of the optimal management 
rule is based on a balance of performance of single stocks with no objective measure that 
quantifies their joint value; and ii) from the economic point of view biological targets are 
the basis for setting management rules and obviously this does not guarantee optimal 
economic performance for single stocks or indeed for the whole fishery.  

In this paper we address these problems thorough an algorithm that analytically 
calculates mixed fishery economic reference points. We illustrate how the algorithm can be 
implemented by applying it to the European Northern Stock of Hake fishery, where fleets 
also capture megrim (Lepidorhombus whiffiagonis) and anglerfish (Lophius piscatorius and 
Lophius budegassa).  

The algorithm highlights the intertemporal dimension of the issue by computing 
reference points that maximise the NPV of profits. The assumption that the manager’s 
objective function is the NPV of profits could be considered a simplification. However, it 
allows us to illustrate how the algorithm can be implemented to reach conservation and 
NPV objectives. 

In practice, fishery managers look at many objectives: NPV of profits, 
employment, trade-offs with other fisheries, etc. In this sense, the algorithm must be 
understood as a method by which broader optimisation problems can be addressed. The 
advantage of the method proposed is that it quantifies the trade-off between conservation 
and managers’ objectives within a mixed fishery. To show how the algorithm can be 
implemented to quantify these trade-offs, we redefine the objective function as MSY and 
compute the “shadow prices” (the Lagrangian multipliers). In fact, as suggested by a 
referee, in real-world applications the quantification of these trade-offs could be more 
useful to managers than the optimal values themselves.  
 
2.- Material and methods 

We use a standard age-structured approach that is used in many stock assessment 
models. Assume that there are n species in the fishery. The stock of species nj ,...,2,1  is 

broken into jA cohorts. That is, for species j  in each period t , there are 1jA  initial old 
cohorts and one new cohort is born. 

Let ja
tz ,  be the mortality rate that affects the population of species j at age a  during 

period t . This mortality rate can be decomposed into fishing mortality, ja
tF ,  and natural 

mortality, jam , , .mFz j,aj,a
t

j,a
t   The population of species j  decreases at an exponential 

rate in accordance with the mortality rate .z j,a
t  Formally, ,N)zexp(N j,a

t
j,a

t
j,1a

1t 
  

where ja
tN ,  represents the abundance of species j  for age a  at the beginning of the time 

period t .  
We assume that species are fished simultaneously in relatively unselective fishing 

operations, jq , and that the fishing selection pattern, 
ja

p
,

, of each species is constant. 

Therefore, for each unit of effort, tE , the fishing mortality over each age and species is 

given t
jjaja

t EqpF
,,  . While the fishing mortality rate may vary from one period and one 

age to another, natural mortality is constant over periods.  
Notice that in this mixed fishery context, we are modelling a multiproduct 

technology such that for a given level of effort each species is captured in fixed proportions 
(Leontief, 1941) at each age. Therefore, with no loss of generality, we can define the 
fishing mortality multiplier as effort, tt EF  , and rescale the original fishing selection 

patterns, jjaja qpp
,,  , to rewrite the fishing mortality over each age and species as 

.,,,
t

ja
t

jjaja
t FpEqpF   
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Notice that by backward substitution ja
tN ,  can be expressed as a function of 

recruitment 

(1)),j(A,...,1a,NN j,1
)1a(t

j,a
t

j,a
t    

where nj ,...,1 , 

(2)
              






  





.1aif1

,1aif)zexp(
1a

1i

1a
itj,a

t  

j,a
t can be understood as the survival function that shows the probability of a recruit 

of species j  born in period )1(  at  reaching age a for a given fishing mortality (effort) 

path )1(321 ,...,,,  atttt FFFF . Notice that the survival function at any period depends upon 

the 2a previous mortality rates. 
The size of a new cohort (recruitment) of species j  is given by the Stock Recruitment 

relationship (S−R),  

  (3),SSBN j
t

j,1
1t   

where,  



)(

1

,,,
jA

a

ja
t

jajaj
t NSSB   is the spawning stock biomass, which is a function of the 

spawning stock weight at age ja,  and the maturity fraction ja, . Finally, the fishing 
yield for each species and age  is given by Baranov’s equation (1918). 
 
 
3.-  Discounted reference points in mixed fisheries 

The objective of this section is to characterise reference points as steady-state solutions 
of dynamic management problems. Formally, let the NPV of a fishery economic indicator 
(discounted economic indicator) be expressed as  

  (4)FCNypr
t

t

n

j

jA

a

j
at

ja
t

ja
t

jat ,
0 1

)(

1

,1
)1(

,,, 


  
 








  

where ja
ty , , j,apr , C(Ft) and   are the yield per fish of species j  for age a , the price of 

species j  for age a , the total cost function (which depends positively on fishing mortality 

at time t, Ft) and the discount factor, 10   , respectively . The discount factor in this 
model represents the willingness of the manager (or society) to trade-off the value of 
fishing today against the benefits of increased profits in the future, measured by higher 
biomass and recruitment. 

Some relevant aspects of the fishery economic indicator (4) must be highlighted. First, 
it takes into account the mixed aspect of the fishery. In fact the economic indicator 
represents the discounted profits of the whole fishery considering the n  species that are 
caught together. Second, the economic indicator can be interpreted in several ways from 
the economic point of view. For instance, if the cost is zero the economic indicator 

represents the discounted revenues of the fishery. Alternatively, if japr , is one, for all 

a and for all j , and the cost is zero, the economic indicator represents the discounted yield 

of the fishery. And thirdly, if the discount factor is one, 1 , then the future is not 
discounted and all future profits are equally weighted in calculating NPV of profits. 

The objective is to find the fishing rate trajectory that maximises the NPV of the mixed 
fishery’s profits (equation (4)) taking into account the S-R relationship (equation (3)) and 
biological precautionary limits. Formally, the maximisation problem consists of solving 
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 

 



























  





 

.,

,,

,max

,1
1

0 1

)(

1

,1
)1(

,,,

,...,0
,...,1},1

2,{

jt                       ,BSSB

jt               ,SSBN

s.t.                              

(5)FCNypr  

j
pa

j
t

j
t

j
t

t
t

n

j

jA

a

j
at

ja
t

ja
t

jat

t
nj

j
tNtF



 

An optimal steady-state solution of problem (5) is defined by a vector 

}
ss

N,.....,
ss

N,
ss

N,
ss

F{ n,11,21,1  such that for any future period, 1 ttss FFF  and 

j
t

j
t

j
ss NNN ,1

1
,1,1

 . Notice that this optimal solution determines a unique value for the 

long-term fishing rate that, if applied, will generate stationary recruitment for all  species 
leading to the maximum long-term profits of the mixed fishery.  

We show in the Supplementary Materials that the steady state solution must satisfy the 
following )1( n  equation system when the precautionary constraints are not binding for 
any species, 

   

(7)           

(6)
d

d

d

d

d

d

,n,.....1j,NN

,ypr
F

N
pNypr

F

FC
N

F

Fy
pr

)j(A

1a

j,a
ss

j,aj,aj,1
ss

n

1j

)j(A

1a

j,a
ss

j,a
ss

jaa1
j,1

ss
)j(A

1a

1a

1i

j,iiaj,1
ss

j,a
ss

j,a
ss

ja
n

1j

ssj,1
ss

a
ss

)j(A

1a

ss
j,a

j,a










































  



 











 





 where j,a
ss  is given by expression (2) valued in the steady-state. 

Once }
ss

N,.....,
ss

N,
ss

N,
ss

F{ n,11,21,1  is known, the steady-state cohort size of any age and 

species can be calculated as j
ss

ja
ss

ja
ss NN ,1,,  . 

An important issue to be analysed is the relationship between the solution of the 
discounted maximisation problem (5) and the standard single-species reference points. In 
the Supplementary Materials we prove that ssF , the optimal steady-state mortality rate of 

problem (5), is just a generalisation of Fmsy. In particular, Fmsy coincides with ssF  for the 

case of one species in which price is one, marginal cost is zero ( F/)F(C dd 0) and 

=1. 
 
4.- A numerical algorithm  

The steps below outline the method for searching for the discounted reference points, 

ssF . 

Step 1: Collect all the exogenous parameters describing biological and economic 
characteristics of all species. This includes: 

• The biological parameters of the species: jap , , ja, , ja, , jam , . 

• The initial population distribution of all species: jaN ,
0 . 

• The precautionary limit reference point, j
paSSB . 

• The multi-sepecies technology, jq .  

• The economic parameters, japr , and  FC . An example of cost function could be a 

linear cost function,   cFFC   In this case, the marginal cost, c , has to be 
reported. This step can be skipped if one is interested in the solution from revenue 
maximisation. In that case   0FC . 

• The discount factor used to calculate variables in present terms,  .  
Step 2: Using outside information, select the S−R relationship to be used. Some 

examples: 
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• If the S−R relationship of species j  is defined as in Shepherd (1982), 

(8),

K

SSB
1

SSB
N jb

j

j

jj
j,1














 

recruitment is determined by 

(9).

1

KN
)j(A

1a

j,aj,aj,a

b/1)j(A

1a

j,aj,aj,aj

jj,1

j






















 

So, j , jb  and jK  have to be reported. 
• If the S−R relationship is not well defined then recruitment may be considered as a 

fixed variable that does not depend on the fishing rate, that is jN ,1 =
j

N
,1

. 
Step 3: Guess a value for the steady-state fishing rate, F . 

Step 4: Calculate recruitment for all species, j,1
ssN  for the steady-state fishing rate 

guessed, F , taking into account the S−R relationship selected in step 2 and the optimal 
condition (7). 

Step 5: Calculate the survival functions, j,a
ss , and yield per fish functions, j,a

ssy for the 

steady-state fishing rate guessed, F , using expression (2) and  

  (10)ss .)zexp(1
z

Fp
pry j,a

j,a

j,a
j,aj,aj,a    

Step 6: Calculate the derivatives of yield per fish for any species and age, and the cost 
function for the steady-state fishing rate guessed, F . In particular,  

 
(11)

d

d
.

F

y

)zexp(1

)zexp(
Fp

z

m

F

Fy j,a
ss

j,a

j,a
j,a

j,a

j,a
ss

j,a












  

Step 7: Calculate the 
F

N j,1
ss

d

d
 using the following expression 

 
 

(12)d

d

d

d

1a

1a
ss .

1

F
N

F

N
)j(A j,aj,aj

)j(A
j,a

ssj,aj,ajj,1
j,1


















 

To that end it is advisable first to calculate: 
• The derivative of the survival functions: 

(13)
.1      0        

,10)(
d

d
1

1

,,,








  



aif

aifp
F

a

i

ja
ss

jija
ss 

 

• The derivative of the cost function: 

(14)
                Fixcost           

Fixcost

d

d









.)F(Cif0

,cF)F(Cifc

F

)F(C
 

• The derivative of the S−R relationship: If the S−R relationship is not well defined, 
then this derivative is zero. Otherwise, the derivative may be calculated analytically. 
For instance, for the Shepherd relationship (equation (8)), 
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   
(15)

d

d
























 









 1
b

b1
1

F
K

)j(A

1a

j,aj,aj,a
j

j
j

)j(A

1a

j,aj,aj,a

b/)b1()j(A

1a

j,aj,aj,aj
)j(A

1a

j,a
ssj,aj,a

j'j

jj







 
Step 8: Solve equation (6) using a one-dimensional equation-solving routine.  

Step 9: Once ssF  has been solved, the steady-state recruitment, j
ssN ,1 , is obtained with 

the S−R relationship as in Step 4, and steady-state cohort sizes, ja
ssN , , are calculated using 

the survival functions (2) and the steady-state recruitment, j
ss

ja
ss

ja
ss NN ,1,,   

Step 10: Check whether the precautionary limit reference point is satisfied for all 
species. If it is not ssF  must be selected as the corner solution of problem (5). Formally, if 

j
paF  is referred to as the fishing mortality rate that guarantees that jSSB  is equal to j

paSSB  

then the corner solution is given by  

 

(20)

(19) 

(18)

.NN

,FNN

,FminF

j,1
pa

j,aj,a
pa

)j(A

1a
pa

j,1
ss

j,aj,aj,aj,1
pa

j
pa

j
pa






















 

 
5.-  An example: the Northern Stock of Hake fishery 
We use the European Northern Stock of Hake as an example of how to find long-term 
reference points in mixed fisheries. This is a fishery where commercial fleets capture 
mainly hake (Merlucius merlucious) and other species such as megrim (Lepidorhombus 
whiffiagonis) and anglerfish (Lophius piscatorius and Lophius budegassa). Furthermore, a 
long-term management plan is currently being designed for this fishery after its recovery 
from strong depletion in the late 90s. 
 
5.1 Calibrating the model 

Tables S1 and S2 in the Supplementary Materials provide the multi-species age 
structure for the four main species caught in the fishery. This information comes from the 
ICES Report of the Working Group on Hake, Monkfish and Megrim (ICES, 2007). Since 
we have been unable to find price information by ages for the secondary species, we use 
the following prices for all ages: €4.35 per kg for megrim and €6.29 per kg for anglerfish, 
both L. budegassa and L. piscatorius. Taking into account these prices and a fishing 
mortality rate of 0.25 for hake, 0.38  for megrim, 0.26 for L. budegassa and 0.21 for L. 
piscatorius, we calculate a value with a yield of €523.38 million. Finally, the mixed fishery 

technology is obtained by normalizing 1hakeq , and matching the initial fishing mortality 

ratios. That is, 52.1megrimq , 04.1q assadegbu   and 84.0spiscatoriuq .  
For computing long-term marginal cost we use a standard practice in economics which 

consists of considering that capital income share is roughly constant at around 70%. This 
fact has been used in other applied fisheries studies such as Hannesson (2007). Therefore 
we assume a total cost of €366.37 million (70% of the value of total landings from this 
fishery). For the current fishing rate, 25.0F , this implies a marginal cost, c , of €1.46 
million.  

Finally, the precautionary reference points for this simulation were set according to 
ICES (2007). 140 000 t for Northern Hake; that is the result of applying a precautionary 
buffer to Blim, the lowest observed biomass in the 2003 assessment (Bpa =100 000 * 1.4). 55 
000 t for Northern megrim, that is the lowest observed SSB in 2003 assessment, since there 
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is not evidences of reduced recruitment at the lowest observed SSB. The same rationale 
was applied to both anglerfishes, resulting in Bpa of 31 000 t for Lophius piscatorius and 22 
000 for Lophius budegassa. 

Continuing with Step 2, the S−R relationship for Northern hake is fitted using the 
Shepherd relationship (1982) described by (8) using recruitment and SSB data for 1978 to 
2006. This fit gives   = 2.4879, K  = 168 270 and b  = 1.7602. For the rest of the species 
the expected recruitment is considered constant over time. In particular, recruitment for 
Northern megrim is 279 630 th, for Lophius budegassa it is 14 330 th and for Lophius 
piscatorius it is 21 630 th.  

Following the working group STECF/SGBRE-07-03, which analysed the impact of the 
hake management plan on the mixed fishery, we assume that the mortality rate of any of 
these species is proportional to the hake mortality rate. Note that in that case the yield per 
fish of any species can be drawn as a function of the hake fishing mortality.  
 
5.2  Findings 

Reference targets for the multi-species European Northern Stock of hake are calculated 
assuming two alternative management scenarios. The first is the classical single-species 
scenario where each species is regulated with an independent reference point associated 

with its own MSY. j
msyF  denotes the target of this scenario for species j = {hake, megrim, 

budegassa, piscatorius}. The second scenario focuses on maximising the NPV of the 
fishery’s profits taking into account its mixed nature and considering a discount factor of 

95.0 . The reference point associated with this mixed scenario is denoted by, 

( profits
0.95βF ). 

Formally all the targets of both scenarios are solutions of equations (6)-(7) under 
different assumptions, which are calculated using the algorithm shown in Section 4. For the 

single-species scenario it is assumed that the target is only species j with j,apr 1, 

i,apr 0 for i ≠ j, 0c  and 1 . Notice that although the management problem is 
solved considering only one of the species the other species are also affected, giving the 
multiproduct fishing technology considered. For the mixed scenario 0c , 95.0  and 

j,apr 0 are assumed for all species j. 
Figure 2 summarises the various elements involved in the solution of the mixed 

scenario where the NPV of profits is maximised. We show that variations in the steady-
state fishing rate F affect the revenues of the fishery in three ways. First, changes in F 
affect current catches in weight of all species. This effect is represented by the first sum on 
the left hand side of equation (6) and is drawn in the top left plot of Figure 2 for all species. 
Second, changes in F affect future weighted catches due to future changes in the size of the 
cohorts currently alive. This effect is represented by the first sum on the right hand side of 
equation (6) and is drawn in the top right plot of Figure 2 for all species, considering a 
discount factor of 95.0 . Third, changes in F affect the number of future recruits. This 
effect is represented by the second sum on the right hand side of equation (6) and is drawn 
in the bottom left plot of Figure 2, considering a discount factor of 95.0 . Note that 
this plot represents only hake because the recruitment for megrim and anglerfish is 
assumed to be constant. These three effects of variations in F on the revenues are illustrated 
in the bottom-right plot, where the dashed line represents the sum of the three elements for 
all species. Formally, the dashed line represents  
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Comparing equations (6) and (21) it can be seen that the optimal fishing rate F is 
determined by   F/FCf sszero dd . This comparison is illustrated in the bottom right plot. 

zerof  is compared with marginal cost, c =1.46, to obtain profits
0.95βF . This reference point can 

be seen to be 0.12.  
To compare the scenarios, we also calculate for each of them the discounted profits 

and the SSB value for all four species. Formally, discounted profits are calculated as  
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Notice that to obtain these values we need to simulate the whole optimal path of fishing 
mortality that drives the fishery from the initial conditions to the steady-state.  

Table 1 shows the reference targets, the discounted profits, the yields and the biomass 
for all species under the single-species and mixed management scenarios. The main 
findings observed are the following. First, the lowest target reference point appears in the 
mixed management scenario, in which the NPV of the whole fishery’s profits is 
maximised. Second, the mixed management scenario is superior to single-species 
management because it leads the fishery to higher discounted profits with higher long-term 
SSB for all species. In fact mixed management implies 11.4% more in discounted profits 
than single-species (hake) management. This win-win result is along the lines of Grafton et 
al. (2007). Third, as in Ulrich et al. (2011) our results also indicate that single-species 
management may lead the other species into unsafe situations. For instance, if the fishery 
were regulated with the anglerfish (L. budegassa) as the single species to be considered, 
then hake SSB would drop below the precautionary level of 140,000 t.  

Finally, the mixed management scenario determines a target reference point that is 
quite similar to the 2/3 of the single-species reference point when hake is the species 

regulated. That is, profits
0.95βF  converges towards 2/3 hake

msyF . Table 2 compares the performance 

of the fishery in the two situations. The discounted profits of the fishery associated with the 

2/3 hake
msyF  have been calculated simulating the evolution of the fishery, considering a 

fishing rate path of 2/3 of the optimal path for hake
msyF . 

 
5.3 Versatile use of the algorithm 

In this section we highlight the intertemporal dimension of the algorithm. In particular, 
we illustrate how the algorithm can be used to quantify the "cost" of trade-offs between 
conservation and managers’ objectives within a mixed fishery. In fact, in real-world 
applications this quantification of trade-offs could be more useful to managers than the 
optimal values themselves.  

To illustrate how to quantify the trade-offs, assume that MSY is the appropriate target. 
Figure 1 shows the dilemma faced by managers when single-species reference points (Fmsy 
or Fmax) are used in this mixed fishery. With Shepherd’s S-R function, the steady-state 
reference point for hake is Fmsy = 0.1715. However, for this value only Lophius piscatorius 
is close to its maximum yield per fish. By contrast, the  Fmax of Lophius budegass is close 
to the Fpa (0.25) for hake while  Fmax for megrim is outside the safety limits for hake.   

If MSY is the target, the objective function can be expressed as 
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Note that equation (23) is obtained from equation (4) when the discount factor is one, 

1 , and C(Ft)=0. If japr , are market prices, the objective function of the mixed fishery 

is the total yield in value of the four species.   However,  j,apr  can be interpreted in a more 

versatile way: it represents the willingness of the manager (or society) to trade-off the value 
of fishing one species against the others.  

In order to measure these trade-offs, the maximisation problem (5) can be rewritten as  
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It measures the cost of distorting the SSB of hake. Formally, the losses associated with an 

increase of  percent the SSB are )( ssss SSBJ    . 

Finally, 
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 is the “shadow price” of one recruit for the other 

species. Remember that for the other species expected recruitment is considered constant 

over time. Therefore, 
kk

t NJ   is the profit from modifying the expected recruitment 

of species k  by  percent.  
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Table 3 quantifies these trade-offs. The steady-state reference point that maximizes the 
total yield in value of the four species is 0.1649. The optimum global fishing mortality is 
lower than the fishing mortality that maximises the single specie reference point for 
Lophius budegassa and megrim and higher for the case of Lophius piscatorius. Therefore, 

k
t multipliers quantify why the fishing mortality of each species is set below or above its 

Fmax level. Setting the fishing mortality rate of Lophius budegassa equal to its reference 
point reduces total yield by 3.9 million Euros.  

Moreover, hake
t  is the “shadow price of a hake recruit”. Therefore, if the total SSB of 

hake is modified by 1% the impact on the number of recruits will reduce total yield by 
104.35 thousand of Euros. Furthermore, the “shadow prices” of the recruits of the other 
species show how sensitive the numerical results of the model are to the expected number 
of recruits used in the simulations.  

 
6.-  Discussion 

Reference points are one of the main tools used by fishing managers to make decisions 
about future catch options. The Johannesburg Submit requires that all fishery stocks be at 
levels capable of producing MSY by 2015. As a first step the European Union, through the 
Common Fisheries Policy (CFP), wants all stocks to be fished at Fmsy by 2015. At the same 
time, the CFP also promotes a gradual change in management to consider the mixed nature 
of many fisheries. It is not possible to fish all the stocks in a mixed fishery at Fmsy (Mace, 
2001). The mixed nature of many fisheries requires that ad hoc reference points be adopted 
for their management. These reference points become an additional reference to help 
managers to make decisions. In this regard, we have developed an algorithm that allows 
reference targets for a mixed fishery to be calculated using basic biological information 
about the age structure of the stocks involved. The algorithm is easily translated to similar 
situations where many stocks managed with different F targets are caught together. 

In this paper target reference points for mixed age-structured fisheries are characterised 
as the steady-state solution of a maximisation problem where the objective function may 
represent an economic indicator that accounts for the future in discounted terms. The 
algorithm deals with two shortcomings of current mixed fisheries management: TACS 
based on single-species objectives are not usually consistent with one another and the inter-
temporal aspects of economic variables are not taken into account.  

This algorithm is applied to the European Northern Stock of Hake, where fleets also 
capture megrim and anglerfish. Data from these stocks are used as an example to illustrate 
the applicability of the algorithm: the results cannot be considered for management 
purposes since models for the stocks considered have been reviewed (or are under review) 
in the wake of problems with data and changes in the perception of their biological 
properties, but they do illustrate the advantages of applying the algorithm. We find that 
under reasonable prices and costs the fishing mortality reference point that maximises 
discounted profits taking into account the mixed character of the fishery is close to 

2/3 hake
msyF  using a discount rate of 5%. This implies a larger spawning biomass and higher 

discounted profits than those associated with a single-species reference point, hake
msyF . In 

fact, losses due to the use of the single-reference target hake
msyF  in this mixed fishery are 

quantified at 11.4% of total discounted profits. Therefore, as Grafton et al. (2007) suggest, 
the use of reference points lower than Fmsy may be a win-win strategy: higher profits and 
safer biomass. 

The example is developed assuming a deterministic linear change in F for all the 
stocks. This is tantamount to assuming effort management instead of the current TAC 
management. Effort management has been seen as a more effective measure for mixed 
fisheries by many authors (Kraak et al., 2008; Ulrich et al., 2011).  

The algorithm is applied to maximise the NPV of fishery profits deterministically with 
no constraints. However constraints can be easily implemented. For example, if a limit 
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reference point is identified for any of the stocks concerned, it can be incorporated as a 
constraint that guarantees that the risk of reaching the limit is low. This may also be done 
by extending the deterministic algorithm to a stochastic one considering the main sources 
of uncertainty.  

Our findings are consistent with those of other authors who recognise that msyF  may be 

too high to be an adequate management reference (Larkin, 1997; Mace, 2001). These 
findings have been followed by many fishery regulations. For instance, according to the 

UN Fish Stock Agreement (1995), msyF  should be a limit rather than a target reference 

point. In this sense the Fish Stock Sustainability Index, used as a performance measure for 
the sustainability of 230 U.S. stocks, considers that a stock is subject to overfishing if it has 
a fishing mortality rate above the level that provides for the level of MSY. Other analyses 

consider using fractions of msyF  as targets to be safer for stocks. For instance NAFO 

(Northwest Atlantic Fisheries Organisation) uses 2/3 msyF  for the yellowtail flounder (see 

Maddock Parsons et al., 2008); Mehanna (2004, 2007) also considers 2/3 msyF  as a target 

reference point for some species in the Gulf of Suez fishery; Jensen (2002) finds that in 

surplus production models the use of 3/4 msyF   maximises yield while minimising the 

impact of fishing on population biomass. Moreover Christiansen (2010) shows that the 
win-win strategy appears to a lesser extent when profits are calculated considering the 
overall fishing sector including processing, distribution and marketing of fish products. All 

these results can be interpreted as an explicit recognition that msyF  is too high to be 

considered a target reference point (Quinn and Collie, 2005). 
Finally, the algorithm proposed is a versatile tool: it can be used by summarising the 

management target in a single objective function.  We highlight the temporal dimension by 
using the NPV of the fishery’s profits as our objective function. However the algorithm can 
easily be applied taking targets based for instance on MSY as its objective function. It is 
well known that quantifying economic values is not a simple task in real-world applications 
and that it may even be considered an inappropriate objective. For many fishery stocks 
MSY is considered the appropriate target. Moreover, targets based on MSY have at least 
one advantage over NPV: there are specific ICES Working Groups that collect data in 
order to quantify it.  

Independently of the objective function used to summarise the management target, the 
algorithm can be used to quantify the "cost" of trade-offs. As a referee suggests, this could 
be more important in a real-world application that the optimal values themselves because 
these trade-offs could be more useful to managers than the optimal values. 

Future research may focus on the extension of this dynamic approach to other contexts 
such as predator-prey relationships, other meta-population models or more state dependent 
fishing technologies, as in van Oostenbrugge et al.(2008).  

 
Supplementary material 
Supplementary material is available at ICESJMS in the online version of this manuscript. It shows in 
detail how the calibration of the model has been prepared using the data set reported by ICES 
(2007).  
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Table 1: Reference points, discounted profits, yields and SSB in the long term under single and 
mixed management scenarios 

 
 

Single-species Management Scenario 
Mixed 

Management 
Scenario 

Reference point (F) hake
msyF  megrim

msyF  budegassa
msyF  spiscatoriu

msyF  profits
0.95βF  

 0.1715 0.3800 0.2400 0.1400 0.1205
  
Discounted profits (‘000 Euros) 5 936 -2 052 3 803 6 468 6 613
  
SSB (tonnes)   
Hake  198 169 40 656 134 219 232 440 255 898
Megrim 96 529 54 448 77 991 107 421 115 098
Anglerfish (Lophius budegassa) 33 716 14 184 24 599 39 383 43 496
Anglerfish (Lophius piscatorius) 66 707 20 150 43 362 8 2597 94 788
  
Yield (tonnes)  
Hake  60 842 25 723 55 673 59 540 57 293
Megrim 13 621 15 863 15 105 12 465 11 544
Anglerfish (Lophius budegassa) 6 826 6 674 7 062 6 479 6 146
Anglerfish (Lophius piscatorius) 19 514 14 860 18 026 19 802 19 683
Source: Own calculations using the algorithm proposed 

 
 

Table 2: Mixed management against 2/3 of single-species (hake) 
reference point 

 2/3 of single-
species (hake) 
Management  

Mixed 
Management  

Reference point (F) 2/3 hake
msyF  profits

0.95βF  

 0.1143 0.1205 
  
Discounted profits (‘000 Euros) 6 599 6 613 
  
SSB (tonnes)   
Hake  263 667 255 898 
Megrim 117 678 115 098 
Anglerfish (Lophius budegassa) 44 907 43 496 
Anglerfish (Lophius piscatorius) 99 087 94 788 
Source: Own calculations using the algorithm proposed 

 



 
Table 3: Lagrange multipliers and shadow costs in the long term under mixed 

management scenario 
 

Objective Total MSY in value (‘000 Euros) 

Reference point 1βF  0.1649 

Changes in fishing mortality of: 
k
ss   Cost kFmax  

Anglerfish (Lophius budegassa) 49 962 3 901 
Anglerfish (Lophius piscatorius) - 488 10 
Megrim 52 674 17 344 

 



megrimpiscabudek

k
ss

kq
,,


 

Cost hake
msyF  

Changes in fishing mortality of hake 131 614 868 

Changes in recruits of: k
ss   

Profit1% 
Expected 

Recruitment 
Anglerfish (Lophius budegassa) 19.12 2 740 
Anglerfish (Lophius piscatorius) 44.99 9 732 
Megrim 1.27 3 552 

 hake
ss   Cost1% SSB 

Changes in recruits of hake  1.56 -104.35 

Cost kFmax : Losses associated with implementing the single species k reference 

point, i.e. )( max
k

t
kk

t FFqJ   ; Cost1% SSB: Losses associated with 

incrementing the SSB of hake by 1%, i.e. ssss SSB01J '.    ; Profit1% 

Expected Recruitment: Profits associated with incrementing by 1% the expected 

recruitment  
kk

t N01J  .  

          Source: Own calculations using the algorithm proposed 
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Figure 1: Fmax for megrim (dotted black line), and Lophius budegassa and piscatorius (grey lines). 
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Figure 2. Target reference point that maximises net present value of profits in the mixed Northern 
Stock considering a discount factor of 95.0 . Changes in F affect the net present value of the 

fishery’s profits through variations in: i) current yields (top left plot), ii) future yields derived from 
variations in future size of the cohorts currently alive (top right plot), and iii) future yield derived 
from changes in future recruits of hake (bottom left plot). The optimal reference point that 
maximises the net present value of profits is given by the F that offsets all these effects (i, ii plus iii) 
against the marginal cost (bottom right plot).    
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Reference points as the steady-state solutions of dynamic 
management problems in mixed age-structured fisheries 
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In this supplementary material we show:  

i) How to solve the maximisation problem (5) in order to obtain the equation system (6)-

(7) that characterises the steady state solution. We also prove that Fmsy coincides with 

ssF  for the case of one species in which price is one, marginal cost is zero 

( F/)F(C dd 0) and =1.  

ii) Tables S1, S2, S3 and S4 show the parameters of the biological model for the four 

species harvested in the Northern Stock: northern hake, northern megrim, lophius 

budegassa, lophius piscatorius. 

 

Assume without loss of generality that 3A  and n=2.  In this context, the function to be 

maximised can be expressed as 
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where  and   are the Lagrange multipliers associated with the first and second restrictions of 

the maximisation problem (5), respectively. Notice that for the general case of n species, there 

would be 2tn constraints. 

 

Moreover, taking into account the survival functions, (2), it is known that   
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Note that tF  appears only in the sums multiplied by t , 1t  and 2t in equation (1S). That is 
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Therefore, the first order conditions from tdF/dL = 0 are given by 
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A generalisation of this example for any n,...,1j   and )j(A,...,1a  can be expressed as 
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The other first order condition comes from j,1
2tdN/dL  = 0  n,...,1j   is given by 
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Notice that given the S-R relationship (equation (3) in the main text), recruitment at period 1 is 

determined by the fish abundance at time 0. Therefore j1
1N ,  cannot be chosen at period 0. The 

relevant state variable is ,...,, 10tN j1
2t   

A generalisation of this example for any n,...,1j   and )j(A,...,1a  can be 

expressed as 
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If the precautionary level restriction is not binding then j
it = 0, and the first order conditions 

(2S)-(3S) valued in the steady state can be written as the following  j+1 equation system 
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Taking into account (1) and substituting (5S) into (4S) the following expression is obtained 
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On the one hand, it can be seen that  
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On the other hand, taking into account the survival functions, (2), valued in the steady state, it 

can be seen that   
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Moreover, taking derivatives in the S-R relationship, (3), valued in the steady state and 

considering (8S), the following is obtained: 
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Substituting (7S) and (9S) into (6S), the following is obtained: 
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which is equation (6) in the main text. 

 

Equation (7) in the main text corresponds to the S-R relationship, (3), valued in the steady state. 
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Moreover, taking into account the definition of the survival function, (2), it is known that 
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It is immediately apparent that the ssF that solves this equation corresponds to Fmsy because this 

expression is the first order condition of the maximisation problem 
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Table S1. Parameters of the age-structured model for Northern Hake. 
 

Parameter Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10 
Initial conditions 

N (thousands) 186 213 152 458 123 457 100 213 67 409 35 551 19 674 10 206 9 147 4 078 1 819 
Population dynamics 

Natural mortality 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
Selectivity parameter 0.00 0.06 0.05 1.15 1.03 1.52 2.09 2.43 2.43 2.43 2.43 
Weights at age (Kg) 0.06 0.13 0.22 0.34 0.60 0.98 1.44 1.83 2.68 2.68 2.68 

Maturity 0.00 0.00 0.00 0.23 0.60 0.60 0.90 1.00 1.00 1.00 1.00 
Initial population 

s.d. 0.200 0.200 0.166 0.086 0.061 0.063 0.076 0.084 0.084 0.084 0.084 
Prices 

€ per kg 2.36 2.93 3.42 3.85 4.55 5.22 5.81 6.22 6.92 6.92 6.92 
Source: Meeting on long-term management plans for northern hake (STECF/SGBRE-07-03 and SGBRE-07-05). Prices: Own calculations from 2007 daily 
sales for the Spanish "300 fleet". 

 

Table S2. Parameters of the age-structured model for Northern Megrim. 
 

Parameter Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10 
Initial conditions 

N (thousands) 279 630 225 980 182 965 176 583 192 375 54 215 15 537 8 254 3 312 9 480 
Population dynamics 

Natural mortality 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 
Selectivity parameter 0.03 0.15 0.42 0.82 1.21 1.54 1.04 0.98 0.67 0.67 
Weights at age (Kg) 0.02 0.05 0.08 0.11 0.15 0.20 0.31 0.38 0.59 0.78 

Maturity 0.04 0.21 0.60 0.90 0.98 1.00 1.00 1.00 1.00 1.00 
Initial population 

s.d. 0.37 0.37 0.37 0.43 0.32 0.25 0.23 0.23 0.25 0.18 
Source: Meeting on long-term management plans for northern hake (STECF/SGBRE-07-03 and SGBRE-07-05).  



Table S3. Parameters of the age-structured model for lophius budegassa. 
 

Parameter Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10 Age 11 Age 12 Age 13 
Initial conditions 

N (thousands) 14 329 19 309 9 983 13 735 5 431 3 090 2 275 1 015 1 159 997 676 406 475 
Population dynamics 

Natural mortality 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
Selectivity          
parameter 

0.01 0.05 0.24 0.58 0.64 1.13 1.03 1.15 1.05 0.93 0.97 1.22 1.22 

Weights at age (Kg) 0.20 0.17 0.33 0.50 0.76 1.06 1.49 2.11 2.64 3.48 3.99 4.49 6.49 
Maturity 0.03 0.07 0.12 0.21 0.34 0.50 0.66 0.79 0.88 1.00 1.00 1.00 1.00 

Initial population 
s.d. 0.20 0.20 0.20 0.20 0.20 0.18 0.17 0.13 0.12 0.08 0.08 0.08 0.08 

Source: Meeting on long-term management plans for northern hake (STECF/SGBRE-07-03 and SGBRE-07-05).  
 

Table S4. Parameters of the age-structured model for lophius piscatorius. 
 

Parameter Age 1 Age 2 Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 10 Age 11 Age 12 Age 13 
Initial conditions 

N (thousands)  21 633 26 019 5 055 5 882 10 246 9 942 8 300 5 259 3 052 1 689 678 429 400 
Population dynamics 

Natural mortality 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 
Selectivity          
parameter 

0.10 0.40 0.50 0.72 0.91 1.13 1.32 1.41 1.57 1.56 2.09 2.53 2.53 

Weights at age (Kg) 0.25 0.34 0.50 0.81 1.30 1.95 2.91 3.88 4.89 5.96 6.94 8.75 12.58 
Maturity 0.00 0.00 0.00 0.00 0.00 0.54 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Initial population 
s.d. 0.20 0.20 0.20 0.20 0.20 0.17 0.13 0.12 0.12 0.08 0.08 0.08 0.08 

Source: Meeting on long-term management plans for northern hake (STECF/SGBRE-07-03 and SGBRE-07-05).  
 


