Itemaren erregistro erraza erakusten du

dc.contributor.advisorPicón Ruiz, Artzai ORCID
dc.contributor.advisorPardo Zubiaur, David ORCID
dc.contributor.authorGaldrán Cabello, Adrián
dc.contributor.otherMatemáticas;;Matematikaes
dc.date.accessioned2016-03-08T14:01:53Z
dc.date.available2016-03-08T14:01:53Z
dc.date.issued2015-12-17
dc.date.submitted2015-12-17
dc.identifier.urihttp://hdl.handle.net/10810/17546
dc.description136 p.es
dc.description.abstractWhen acquired in attenuating media, digital images of ten suffer from a particularly complex degradation that reduces their visual quality, hindering their suitability for further computational applications, or simply decreasing the visual pleasan tness for the user. In these cases, mathematical image processing reveals it self as an ideal tool to recover some of the information lost during the degradation process. In this dissertation,we deal with three of such practical scenarios in which this problematic is specially relevant, namely, underwater image enhancement, fogremoval and mammographic image processing. In the case of digital mammograms,X-ray beams traverse human tissue, and electronic detectorscapture them as they reach the other side. However, the superposition on a bidimensional image of three-dimensional structures produces low contraste dimages in which structures of interest suffer from a diminished visibility, obstructing diagnosis tasks. Regarding fog removal, the loss of contrast is produced by the atmospheric conditions, and white colour takes over the scene uniformly as distance increases, also reducing visibility.For underwater images, there is an added difficulty, since colour is not lost uniformly; instead, red colours decay the fastest, and green and blue colours typically dominate the acquired images. To address all these challenges,in this dissertation we develop new methodologies that rely on: a)physical models of the observed degradation, and b) the calculus of variations.Equipped with this powerful machinery, we design novel theoreticaland computational tools, including image-dependent functional energies that capture the particularities of each degradation model. These energie sare composed of different integral terms that are simultaneous lyminimized by means of efficient numerical schemes, producing a clean,visually-pleasant and use ful output image, with better contrast and increased visibility. In every considered application, we provide comprehensive qualitative (visual) and quantitative experimental results to validateour methods, confirming that the developed techniques out perform other existing approaches in the literature.es
dc.language.isoenges
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjectmathematicses
dc.subjectphotographyes
dc.subjectphysics of visiones
dc.subjectmatemáticases
dc.subjectfotografíaes
dc.subjectfísica de la visiónes
dc.titleVisibility recovery on images acquired in attenuating media. Application to underwater, fog, and mammographic imaginges
dc.typeinfo:eu-repo/semantics/doctoralThesises
dc.rights.holder(c)2015 ADRIAN GALDRAN CABELLO
dc.identifier.studentID649380es
dc.identifier.projectID515es
dc.departamentoesMatemáticases_ES
dc.departamentoeuMatematikaes_ES


Item honetako fitxategiak

Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Itemaren erregistro erraza erakusten du