Distributional semantics and machine learning for statistical machine translation
Fecha
2016-05-24Autor
Artetxe Zurutuza, Mikel
Metadatos
Mostrar el registro completo del ítemResumen
[EU]Lan honetan semantika distribuzionalaren eta ikasketa automatikoaren erabilera aztertzen
dugu itzulpen automatiko estatistikoa hobetzeko. Bide horretan, erregresio logistikoan
oinarritutako ikasketa automatikoko eredu bat proposatzen dugu hitz-segiden itzulpen-
probabilitatea modu dinamikoan modelatzeko. Proposatutako eredua itzulpen automatiko
estatistikoko ohiko itzulpen-probabilitateen orokortze bat dela frogatzen dugu, eta testuinguruko nahiz semantika distribuzionaleko informazioa barneratzeko baliatu ezaugarri
lexiko, hitz-cluster eta hitzen errepresentazio bektorialen bidez. Horretaz gain, semantika
distribuzionaleko ezagutza itzulpen automatiko estatistikoan txertatzeko beste hurbilpen
bat lantzen dugu: hitzen errepresentazio bektorial elebidunak erabiltzea hitz-segiden
itzulpenen antzekotasuna modelatzeko. Gure esperimentuek proposatutako ereduen baliagarritasuna erakusten dute, emaitza itxaropentsuak eskuratuz oinarrizko sistema sendo
baten gainean. Era berean, gure lanak ekarpen garrantzitsuak egiten ditu errepresentazio
bektorialen mapaketa elebidunei eta hitzen errepresentazio bektorialetan oinarritutako
hitz-segiden antzekotasun neurriei dagokienean, itzulpen automatikoaz haratago balio
propio bat dutenak semantika distribuzionalaren arloan. [EN]In this work, we explore the use of distributional semantics and machine learning to
improve statistical machine translation. For that purpose, we propose the use of a logistic
regression based machine learning model for dynamic phrase translation probability mod-
eling. We prove that the proposed model can be seen as a generalization of the standard
translation probabilities used in statistical machine translation, and use it to incorporate
context and distributional semantic information through lexical, word cluster and word
embedding features. Apart from that, we explore the use of word embeddings for phrase
translation probability scoring as an alternative approach to incorporate distributional
semantic knowledge into statistical machine translation. Our experiments show the
effectiveness of the proposed models, achieving promising results over a strong baseline.
At the same time, our work makes important contributions in relation to bilingual word
embedding mappings and word embedding based phrase similarity measures, which go be-
yond machine translation and have an intrinsic value in the field of distributional semantics.