UPV-EHU ADDI
  • Itzuli
    • English
    • español
    • Basque
  • Nire Dspace
  • Basque 
    • English
    • español
    • Basque
  • FAQ
Item erakusi 
  •   ADDI
  • IKERKUNTZA
  • Ikerketarako Taldeak, Institutuak eta Gune Kolaboratzaileak
  • BCBL
  • BCBL-Publications
  • Item erakusi
  •   ADDI
  • IKERKUNTZA
  • Ikerketarako Taldeak, Institutuak eta Gune Kolaboratzaileak
  • BCBL
  • BCBL-Publications
  • Item erakusi
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling

Thumbnail
Ikusi/Ireki
Fast and Sequence_Puonti.pdf (1.183Mb)
Data
2016
Egilea
Puonti, Oula
Iglesias, Juan Eugenio
Van Leemput, Koen
Metadata
Itemaren erregistro osoa erakusten du
  Estadisticas en RECOLECTA
(LA Referencia)

Oula Puonti, Juan Eugenio Iglesias, Koen Van Leemput, Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling, NeuroImage, Volume 143, December 2016, Pages 235-249, ISSN 1053-8119, http://dx.doi.org/10.1016/j.neuroimage.2016.09.011.
URI
http://hdl.handle.net/10810/20881
Laburpena
Quantitative analysis of magnetic resonance imaging (MRI) scans of the brain requires accurate automated segmentation of anatomical structures. A desirable feature for such segmentation methods is to be robust against changes in acquisition platform and imaging protocol. In this paper we validate the performance of a segmentation algorithm designed to meet these requirements, building upon generative parametric models previously used in tissue classification. The method is tested on four different datasets acquired with different scanners, field strengths and pulse sequences, demonstrating comparable accuracy to state-of-the-art methods on T1-weighted scans while being one to two orders of magnitude faster. The proposed algorithm is also shown to be robust against small training datasets, and readily handles images with different MRI contrast as well as multi-contrast data.
Collections
  • BCBL-Publications

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka
 

 

Zerrendatu

Gordailu osoaKomunitateak & bildumakArgitalpen dataren araberaEgileakIzenburuakDepartamentos (cas.)Departamentos (eus.)MateriakBilduma hauArgitalpen dataren araberaEgileakIzenburuakDepartamentos (cas.)Departamentos (eus.)Materiak

Nire kontua

Sartu

Estatistikak

Ikusi erabilearen inguruko estatistikak

DSpace 6.4 software copyright © -2023  DuraSpace
OpenAIRE
EHU Bilbioteka