Contaje de mitosis en imágenes histológicas mediante redes neuronales convolucionales
Fecha
2018Autor
Salado García, Juan Pablo
Bereciartua Pérez, María Aranzazu
Irusta Zarandona, Unai
Metadatos
Mostrar el registro completo del ítem
CASEIB 2017: XXXV Congreso anual de la Sociedad Española de Ingeniería Biomédica: Libro de actas, Bilbao 29 de Noviembre - 1 de Diciembre : 199-202 (2018)
Resumen
El diagnóstico último del cáncer se realiza por los patólogos mediante el análisis de imágenes histológicas. Uno de los marcadores más importantes en el pronóstico y detección temprana del mismo es el denominado grado de proliferación, que se estima mediante el contaje de figuras mitóticas en imágenes histológicas tintadas con hematoxilina y eosina. Los patólogos realizan este contaje de mitosis de manera manual. Este proceso es costoso y subjetivo, existiendo discrepancias entre los expertos. En los últimos años, el aumento de microscopios escáneres ha permitido la digitalización de las muestras histológicas y su posterior procesamiento. En este trabajo se presenta un método para el contaje automático de mitosis en imágenes histológicas. Este método comprende dos fases: 1) selección de regiones candidatas a mitosis basada en técnicas convencionales de procesamiento de imagen; 2) clasificación mediante Redes Neuronales Convolucionales y técnicas de Deep Learning. El método ha sido validado sobre una base de datos con 656 casos, y se ha obtenido una sensibilidad de 0.617 y un valor de F1 de 0.541 en consonancia con el estado del arte.