Abstract
We address the quantisation of a model that induces the Little Sibling of the Big Rip (LSBR) abrupt event, where the dark energy content is described by means of a phantom-like fluid or a phantom scalar field. The quantisation is done in the framework of the Wheeler-DeWitt (WDW) equation and imposing the DeWitt boundary condition; i.e., the wave function vanishes close to the abrupt event. We analyse the WDW equation within two descriptions: First, when the dark energy content is described with a perfect fluid. This leaves the problem with the scale factor as the single degree of freedom. Second, when the dark energy content is described with a phantom scalar field in such a way that an additional degree of freedom is incorporated. Here, we have applied the Born-Oppenheimer (BO) approximation in order to simplify the WDW equation. In all cases, the obtained wave function vanishes when the LSBR takes place, thus fulfilling the DeWitt boundary condition.