Itemaren erregistro erraza erakusten du

dc.contributor.authorGhefiri, Khaoula
dc.contributor.authorGarrido Hernández, Izaskun ORCID
dc.contributor.authorBouallègue, Soufiene
dc.contributor.authorHaggège, Joseph
dc.contributor.authorGarrido Hernández, Aitor Josu ORCID
dc.date.accessioned2019-04-02T14:55:14Z
dc.date.available2019-04-02T14:55:14Z
dc.date.issued2018-10-17
dc.identifier.citationSustainability 10(10) : (2018) // Article ID 3746es_ES
dc.identifier.issn2071-1050
dc.identifier.urihttp://hdl.handle.net/10810/32304
dc.description.abstractArtificial Intelligence techniques have shown outstanding results for solving many tasks in a wide variety of research areas. Its excellent capabilities for the purpose of robust pattern recognition which make them suitable for many complex renewable energy systems. In this context, the Simulation of Tidal Turbine in a Digital Environment seeks to make the tidal turbines competitive by driving up the extracted power associated with an adequate control. An increment in power extraction can only be archived by improved understanding of the behaviors of key components of the turbine power-train (blades, pitch-control, bearings, seals, gearboxes, generators and power-electronics). Whilst many of these components are used in wind turbines, the loading regime for a tidal turbine is quite different. This article presents a novel hybrid Neural Fuzzy design to control turbine power-trains with the objective of accurately deriving and improving the generated power. In addition, the proposed control scheme constitutes a basis for optimizing the turbine control approaches to maximize the output power production. Two study cases based on two realistic tidal sites are presented to test these control strategies. The simulation results prove the effectiveness of the investigated schemes, which present an improved power extraction capability and an effective reference tracking against disturbance.es_ES
dc.description.sponsorshipThis work was supported by the MINECO through the Research Project DPI2015-70075-R (MINECO/FEDER, UE). The authors would like to thank the collaboration of the Basque Energy Agency (EVE) through Agreement UPV/EHUEVE23/6/2011, the Spanish National Fusion Laboratory (EURATOM-CIEMAT) through Agreement UPV/EHUCIEMAT08/190 and EUSKAMPUS-Campus of International Excellence.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/DPI2015-70075-Res_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectfuzzy logic controles_ES
dc.subjectartificial neural networks controles_ES
dc.subjecttidal stream generatores_ES
dc.subjectswell effect disturbancees_ES
dc.subjectdoubly fed induction generatores_ES
dc.subjectmaximum power point trackinges_ES
dc.subjectfed induction generatores_ES
dc.subjectmarine renewable energyes_ES
dc.subjectpid controlleres_ES
dc.subjectwind turbinees_ES
dc.subjectpoweres_ES
dc.subjectwavees_ES
dc.subjectnetworkses_ES
dc.subjectperformancees_ES
dc.subjectsystemses_ES
dc.subjectflowes_ES
dc.titleHybrid Neural Fuzzy Design-Based Rotational Speed Control of a Tidal Stream Generator Plantes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://www.mdpi.com/2071-1050/10/10/3746es_ES
dc.identifier.doi10.3390/su10103746
dc.departamentoesIngeniería de sistemas y automáticaes_ES
dc.departamentoeuSistemen ingeniaritza eta automatikaes_ES


Item honetako fitxategiak

Thumbnail
Thumbnail

Item hau honako bilduma honetan/hauetan agertzen da

Itemaren erregistro erraza erakusten du