Uniaxial and Mixed Orientations of Poly(ethylene oxide) in Nanoporous Alumina Studied by X-ray Pole Figure Analysis
Ikusi/ Ireki
Data
2018-11-16Egilea
Su, Cui
Shi, Guangyu
Li, Xiaolu
Zhang, Xiuqin
Wang, Dujin
Liu, Guoming
Macromolecules 51(23) : 9484−9493 (2018)
Laburpena
The orientation of polymers under confinement is a basic, yet not fully understood phenomenon. In this work, the texture of poly(ethylene oxide) (PEO) infiltrated in nanoporous anodic alumina oxide (AAO) templates was investigated by X-ray pole figures. The influence of geometry and crystallization conditions, such as pore diameter, aspect ratio, and cooling rates, was systematically examined. All the samples exhibited a single, volume-dependent crystallization temperature (Tc) at temperatures much lower than that exhibited by bulk PEO, indicating “clean” microdomains without detectable heterogeneous nucleation. An “orientation diagram” was established to account for the experimental observations. Under very high cooling rates (quenching), crystallization of PEO within AAO was nucleation-controlled, adopting a random distribution of crystallites. Under low cooling rates, growth kinetics played a decisive role on the crystal orientation. A relatively faster cooling rate (10 °C/min) and/or smaller pores lead to the <120>* ║ pore axis (n⃗) mode (uniaxial orientation). When the cooling rate was lower (1 °C/min), and/or the pores were larger, a mixed orientation, with a coexistence of <120>* ║ n⃗ and <010>* ║ n⃗ , was observed. The results favor the kinetic model where the fastest growth direction tends to align parallel to the pore axis.