Show simple item record

dc.contributor.authorProctor, Christopher M.
dc.contributor.authorChan, Chung Yuen
dc.contributor.authorPorcarelli, Luca
dc.contributor.authorUdabe Sánchez, Esther
dc.contributor.authorSanchez‐Sanchez, Ana
dc.contributor.authorDel Agua López, Isabel
dc.contributor.authorMecerreyes Molero, David
dc.contributor.authorMalliaras, George G.
dc.date.accessioned2019-10-11T14:53:10Z
dc.date.available2019-10-11T14:53:10Z
dc.date.issued2019-07-29
dc.identifier.citationChemistry of Materials 31(17) : 7080-7084 (2019)es_ES
dc.identifier.issn0897-4756
dc.identifier.urihttp://hdl.handle.net/10810/35685
dc.description.abstractLocal drug delivery directly to the source of a given pathology using retrodialysis is a promising approach to treating otherwise untreatable diseases. As the primary material component in retrodialysis, the semipermeable membrane represents a critical point for innovation. This work presents a new ionic hydrogel based on polyethylene glycol and acrylate with dopamine counterions. The ionic hydrogel membrane is shown to be a promising material for controlled diffusive delivery of dopamine. The ionic nature of the membrane accelerates uptake of cationic species compared to a nonionic membrane of otherwise similar composition. It is demonstrated that the increased uptake of cations can be exploited to confer an accelerated transport of cationic species between reservoirs as is desired in retrodialysis applications. This effect is shown to enable nearly 10-fold increases in drug delivery rates from low concentration solutions. The processability of the membrane is found to allow for integration with microfabricated devices which will in turn accelerate adaptation into both existing and emerging device modalities. It is anticipated that a similar materials design approach may be broadly applied to a variety of cationic and anionic compounds for drug delivery applications ranging from neurological disorders to cancer.es_ES
dc.description.sponsorship- EPSRC (EP/S009000/1) - Marie Sklodowska-Curie Grant Agreement No. 823989. - Borysiewicz Biomedical Sciences Fellowship program. - Marie SklodowskaCurie IF BIKE Project No. 742865.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/823989es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/742865es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.titleIonic Hydrogel for Accelerated Dopamine Delivery via Retrodialysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2019 American Chemical Societyes_ES
dc.relation.publisherversionhttps://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b02135es_ES
dc.identifier.doi10.1021/acs.chemmater.9b02135
dc.contributor.funderEuropean Commission
dc.departamentoesQuímica aplicadaes_ES
dc.departamentoeuKimika aplikatuaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record