Influence of Heat Input on the Formation of Laves Phases and Hot Cracking in Plasma Arc Welding (PAW) Additive Manufacturing of Inconel 718
Fecha
2020-06-09Autor
Artaza, Teresa
Suárez González, Alfredo
Veiga Suárez, Fernando
Metadatos
Mostrar el registro completo del ítem
Metals 10(6) : (2020) // Article ID 771
Resumen
Nickel-based alloys have had extensive immersion in the manufacturing world in recent decades, especially in high added value sectors such as the aeronautical sector. Inconel 718 is the most widespread in terms of implantation. Therefore, the interest in adapting the manufacture of this material to additive manufacturing technologies is a significant objective within the scientific community. Among these technologies for the manufacture of parts by material deposition, plasma arc welding (PAW) has advantages derived from its simplicity for automation and integration on the work floor with high deposition ratios. These characteristics make it very economically appetizing. However, given the tendency of this material to form precipitates in its microstructure, its manufacturing by additive methods is very challenging. In this article, three deposition conditions are analyzed in which the energy and deposition ratio used are varied, and two cooling strategies are studied. The interpass cooling strategy (ICS) in which a fixed time is expected between passes and controlled overlay strategy (COS) in which the temperature at which the next welding pass starts is controlled. This COS strategy turns out to be advantageous from the point of view of the manufacturing time, but the deposition conditions must be correctly defined to avoid the formation of Laves phases and hot cracking in the final workpiece.
Colecciones
Excepto si se señala otra cosa, la licencia del ítem se describe como 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).