Show simple item record

dc.contributor.authorLitti, Lucio
dc.contributor.authorReguera Gómez, Javier
dc.contributor.authorGarcía de Abajo, F. Javier
dc.contributor.authorMeneghetti, Moreno
dc.contributor.authorLiz Marzán, Luis Manuel
dc.date.accessioned2020-10-26T13:03:45Z
dc.date.available2020-10-26T13:03:45Z
dc.date.issued2020-01-01
dc.identifier.citationNanoscale Horizons 5(1) : 102-108 (2020)es_ES
dc.identifier.issn2055-6756
dc.identifier.issn2055-6764
dc.identifier.urihttp://hdl.handle.net/10810/47283
dc.description.abstractWe demonstrate that the protonation chemistry of molecules adsorbed at nanometer distances from the surface of anisotropic gold nanoparticles can be manipulated through the effect of surface morphology on the local proton density of an organic coating. Direct evidence of this remarkable effect was obtained by monitoring surface-enhanced Raman scattering (SERS) from mercaptobenzoic acid and 4-aminobenzenethiol molecules adsorbed on gold nanostars. By smoothing the initially sharp nanostar tips through a mild thermal treatment, changes were induced on protonation of the molecules, which can be observed through changes in the measured SERS spectra. These results shed light on the local chemical environment near anisotropic colloidal nanoparticles and open an alternative avenue to actively control chemistry through surface morphology.es_ES
dc.description.sponsorshipLL and LML-M acknowledge funding from European Commission Grant (EUSMI 731019). Funding is also acknowledged from the Spanish MINECO (MAT2017-86659-R and MDM-2017-0720 to LML-M; MAT2017-88492-R and SEV2015-0522 to JGA) and the European Research Council (Advanced Grant 787510 4DBIOSERS to LML-M; Advanced Grant 789104-eNANO to JGA).es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistryes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2017-86659-Res_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MDM-2017-0720 to LML-Mes_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/MAT2017-88492-Res_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/731019es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.subjectenhanced raman-scatteringes_ES
dc.subjectP-aminothiophenoles_ES
dc.subjectintracellular PHes_ES
dc.subjectgold nanostarses_ES
dc.subject4-aminobenzenethioles_ES
dc.subjectspectroscopyes_ES
dc.subjectnanorodses_ES
dc.subjectcellses_ES
dc.subjectAGes_ES
dc.titleManipulating chemistry through nanoparticle morphologyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.es_ES
dc.rights.holderAtribución-NoComercial 3.0 España*
dc.relation.publisherversionhttps://pubs.rsc.org/en/content/articlelanding/2020/NH/C9NH00456D#!divAbstractes_ES
dc.identifier.doi1039/c9nh00456d
dc.contributor.funderEuropean Commission
dc.departamentoesQuímica aplicadaes_ES
dc.departamentoeuKimika aplikatuaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.