Organic Matter Decomposition and Ecosystem Metabolism as Tools to Assess the Functional Integrity of Streams and Rivers–A Systematic Review
Ikusi/ Ireki
Data
2020-12-15Egilea
Ferreira, Verónica
Tiegs, Scott D.
Young, Roger
Water 12(12) : (2020) // Article ID 3523
Laburpena
Streams and rivers provide important services to humans, and therefore, their ecological integrity should be a societal goal. Although ecological integrity encompasses structural and functional integrity, stream bioassessment rarely considers ecosystem functioning. Organic matter decomposition and ecosystem metabolism are prime candidate indicators of stream functional integrity, and here we review each of these functions, the methods used for their determination, and their strengths and limitations for bioassessment. We also provide a systematic review of studies that have addressed organic matter decomposition (88 studies) and ecosystem metabolism (50 studies) for stream bioassessment since the year 2000. Most studies were conducted in temperate regions. Bioassessment based on organic matter decomposition mostly used leaf litter in coarse-mesh bags, but fine-mesh bags were also common, and cotton strips and wood were frequent in New Zealand. Ecosystem metabolism was most often based on the open-channel method and used a single-station approach. Organic matter decomposition and ecosystem metabolism performed well at detecting environmental change (≈75% studies), with performances varying between 50 and 100% depending on the type of environmental change; both functions were sensitive to restoration practices in 100% of the studies examined. Finally, we provide examples where functional tools are used to complement the assessments of stream ecological integrity. With this review, we hope to facilitate the widespread incorporation of ecosystem processes into bioassessment programs with the broader aim of more effectively managing stream and river ecosystems.
Collections
Bestelakorik adierazi ezean, itemaren baimena horrela deskribatzen da:2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).