Show simple item record

dc.contributor.authorHoltgrewe, K.
dc.contributor.authorMahatha, S. K.
dc.contributor.authorSheverdyaeva, P. M.
dc.contributor.authorMoras, P.
dc.contributor.authorFlammini, R.
dc.contributor.authorColonna, S.
dc.contributor.authorRonci, F.
dc.contributor.authorPapagno, M.
dc.contributor.authorBarla, A.
dc.contributor.authorPetaccia, Luca
dc.contributor.authorAliev, Ziya S.
dc.contributor.authorBabanly, Mahammad B.
dc.contributor.authorChulkov, Evgueni V.
dc.contributor.authorSanna, S.
dc.contributor.authorHogan, C.
dc.contributor.authorCarbone, C.
dc.date.accessioned2021-03-04T09:29:17Z
dc.date.available2021-03-04T09:29:17Z
dc.date.issued2020-09-03
dc.identifier.citationScientific Reports 10(1) : (2020) // Article ID 14619es_ES
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10810/50463
dc.description.abstractTopological surface states usually emerge at the boundary between a topological and a conventional insulator. Their precise physical character and spatial localization depend on the complex interplay between the chemical, structural and electronic properties of the two insulators in contact. Using a lattice-matched heterointerface of single and double bilayers of beta -antimonene and bismuth selenide, we perform a comprehensive experimental and theoretical study of the chiral surface states by means of microscopy and spectroscopic measurements complemented by first-principles calculations. We demonstrate that, although beta -antimonene is a trivial insulator in its free-standing form, it inherits the unique symmetry-protected spin texture from the substrate via a proximity effect that induces outward migration of the topological state. This "topologization" of beta -antimonene is found to be driven by the hybridization of the bands from either side of the interface.es_ES
dc.description.sponsorshipCalculations were performed at the Hazel Hen cluster at the Hochstleistungsrechenzentrum Stuttgart (HLRS), the Lichtenberg cluster at TU Darmstadt, the Center for Materials Research at JLU Gie beta en, and the CINECA Supercomputing Centre at Bologna. The authors acknowledge the computational resources and support provided by the HPC Core Facility and the HRZ of the Justus-Liebig Universitat, and by CINECA via the ISCRA initiative. Technical support from Giovanni Emma, Massimiliano Rinaldi, Luca Sancin, and Fabio Zuccaro is acknowledged. We acknowledge the project EUROFEL-ROADMAP ESFRI. E.V.C. acknowledges support from the Saint Petersburg State University (Grant No. 51126254) and Fundamental Research Program of State Academies of Sciences for 2019-2021 (research direction III.23.2.9). The authors wish to thank Elettra Sincrotrone Trieste for providing access to its synchrotron radiation facilities.es_ES
dc.language.isoenges_ES
dc.publisherNaturees_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjecttotal-energy calculationses_ES
dc.subjectstateses_ES
dc.titleTopologization of Beta-Antimonene on Bi2Se3 Via Proximity Effectses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-020-71624-4es_ES
dc.identifier.doi10.1038/s41598-020-71624-4
dc.departamentoesFísica de materialeses_ES
dc.departamentoeuMaterialen fisikaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0)