Show simple item record

dc.contributor.authorBan, Yue
dc.contributor.authorChen, Xi
dc.contributor.authorTorrontegui, E.
dc.contributor.authorSolano Villanueva, Enrique Leónidas ORCID
dc.contributor.authorCasanova Marcos, Jorge
dc.date.accessioned2021-03-24T11:43:16Z
dc.date.available2021-03-24T11:43:16Z
dc.date.issued2021-03-11
dc.identifier.citationScientific Reports 11 : (2021) // Article ID 5783es_ES
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/10810/50755
dc.description.abstractThe quantum perceptron is a fundamental building block for quantum machine learning. This is a multidisciplinary field that incorporates abilities of quantum computing, such as state superposition and entanglement, to classical machine learning schemes. Motivated by the techniques of shortcuts to adiabaticity, we propose a speed-up quantum perceptron where a control field on the perceptron is inversely engineered leading to a rapid nonlinear response with a sigmoid activation function. This results in faster overall perceptron performance compared to quasi-adiabatic protocols, as well as in enhanced robustness against imperfections in the controls.es_ES
dc.description.sponsorshipWe acknowledge financial support from Spanish Government via PGC2018-095113-B-I00 (MCIU/AEI/FEDER, UE), Basque Government via IT986-16, as well as from QMiCS (820505) and OpenSuperQ (820363) of the EU Flagship on Quantum Technologies, and the EU FET Open Grant Quromorphic (828826). J. C. acknowledges the Ramón y Cajal program (RYC2018- 025197-I) and the EUR2020-112117 Project of the Spanish MICINN, as well as support from the UPV/EHU through the Grant EHUrOPE. X. C. acknowledges NSFC (12075145), SMSTC (2019SHZDZX01-ZX04, 18010500400 and 18ZR1415500), the Program for Eastern Scholar and the Ramón y Cajal program of the Spanish MICINN (RYC-2017-22482). E. T. acknowledges support from Project PGC2018-094792-B-I00 (MCIU/AEI/FEDER,UE), CSIC Research Platform PTI-001, and CAM/FEDER Project No. S2018/TCS-4342 (QUITEMAD-CM)es_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/828826es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/RYC-2017-22482es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/RYC2018-025197-Ies_ES
dc.relationinfo:eu-repo/grantAgreement/MCIU/PGC2018- 094792-B-I00es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleSpeeding up quantum perceptron via shortcuts to adiabaticityes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.nature.com/articles/s41598-021-85208-3#additional-informationes_ES
dc.identifier.doi10.1038/s41598-021-85208-3
dc.contributor.funderEuropean Commission
dc.departamentoesQuímica físicaes_ES
dc.departamentoeuKimika fisikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Except where otherwise noted, this item's license is described as This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.