Influence of Nb on Ti Diffusion in Gamma-TiAl Intermetallics Studied by Mechanical Spectroscopy
Ikusi/ Ireki
Data
2021-01-25Egilea
Ibáñez Pérez, Josu
Nó Sánchez, María Luisa
Oehring, M.
Clemens, Helmut
Journal Of Alloys And Compounds 867 : (2021) // Article ID 158880
Laburpena
The development of intermetallic titanium aluminides has been driven by the aeronautic and aerospace industries because of the excellent mechanical properties and low density of gamma-TiAl based alloys. Up to now, several generations of gamma-TiAl based alloys were developed with increasing complexity of the alloy systems. Nb is one of the most important alloying elements in gamma-TiAl alloys and although it is considered as a slow diffuser, its influence has not been fully quantified yet. In this work we demonstrate, through mechanical spectroscopy measurements conducted on several gamma-TiAl based alloys with different Nb content, that Nb impedes the diffusion of Ti atoms in the alpha(2)-Ti3Al phase. Internal friction measurements show a relaxation peak P(alpha(2)), which is associated with short distance diffusion of Ti atoms in the alpha(2) phase, involving stress-induced rotation of dipoles Al-V-Ti-Al, whose activation energy is dependent on the Nb content. The increase of the activation energy is quantified as Delta E-a(Ti)= 0.037 eV x at% Nb, being attributed to the next-neighbor interaction of Nb atoms with the local configuration of Ti-V-Ti. This mechanism also produces a further broadening of the relaxation peak, which is attributed to the near-next-neighbor interactions for high Nb contents. Finally, an atomic model for the mechanism responsible for this relaxation is proposed allowing to explain the observed experimental behavior