Benefits of cryopreservation as long-term storage method of encapsulated cardiosphere-derived cells for cardiac therapy: A biomechanical analysis
Ikusi/ Ireki
Data
2021-09-25Egilea
Paz Artigas, Laura
Ziani, Kaoutar
Alcaine, Clara
Báez Díaz, Claudia
Blanco Blázquez, Virginia
Ochoa, Ignacio
Ciriza Astrain, Jesús
International Journal of Pharmaceutics 607 : (2021) // Article ID 121014
Laburpena
[EN]Cardiosphere-derived cells (CDCs) encapsulated within alginate-poly-L-lysine-alginate (APA) microcapsules present a promising treatment alternative for myocardial infarction. However, clinical translatability of encapsulated CDCs requires robust long-term preservation of microcapsule and cell stability, since cell culture at 37 degrees C for long periods prior to patient implantation involve high resource, space and manpower costs, sometimes unaffordable for clinical facilities. Cryopreservation in liquid nitrogen is a well-established procedure to easily store cells with good recovery rate, but its effects on encapsulated cells are understudied. In this work, we assess both the biological response of CDCs and the mechanical stability of microcapsules after long-term (i.e., 60 days) cryopreservation and compare them to encapsulated CDCs cultured at 37 degrees C. We investigate for the first time the effects of cryopreservation on stiffness and topographical features of microcapsules for cell therapy. Our results show that functionality of encapsulated CDCs is optimum during 7 days at 37 degrees C, while cryopreservation seems to better guarantee the stability of both CDCs and APA microcapsules properties during longer storage than 15 days. These results point out cryopreservation as a suitable technique for long-term storage of encapsulated cells to be translated from the bench to the clinic.