Laburpena
Solar energy is an energy intermittent source that faces a substantial challenge for its power dispatchability. Hence, concentrating solar power (CSP) plants and solar process heat (SPH) applications employ thermal energy storage (TES) technologies as a link between power generation and optimal load distribution. Ordinary Portland cement (OPC)-based materials are widely used in sensible TES, but their use is limited to operation temperatures below 400 to 500 °C because of thermal degradation processes. This work proposes a geopolymer (GEO)-based concrete as a suitable alternative to OPC concrete for TES that withstands high running temperatures, higher than 500 °C. To this end, thermophysical properties of a geopolymer-based concrete sample were initially measured experimentally; later, energy storage capacity and thermal behavior of the GEO sample were modeled numerically. In fact, different thermal scenarios were modeled, revealing that GEO-based concrete can be a sound choice due to its thermal energy storage capacity, high thermal diffusivity and capability to work at high temperature regimes.