Fabrication and Magneto-Structural Properties of Co2-Based Heusler Alloy Glass-Coated Microwires with High Curie Temperature
View/ Open
Date
2022Author
Salaheldeen, Mohamed
García Gómez, Alfonso
Ipatov, Mihail
Metadata
Show full item record
Chemosensors 10(6) : (2022) // Article ID 225
Abstract
[EN] In this work, we were able to produce Co2FeSi Heusler alloy glass-covered microwires with a metallic nucleus diameter of about 4.4 µm and total sample diameter of about 17.6 μm by the Taylor–Ulitovsky Technique. This low cost and single step fabrication process allowed the preparation of up to kilometers long glass-coated microwires starting from a few grams of high purity inexpensive elements (Co, Fe and Si), for a wide range of applications. From the X-ray diffraction, XRD, analysis of the metallic nucleus, it was shown that the structure consists of a mixture of crystalline and amorphous phases. The single and wide crystalline peak was attributed to a L21 crystalline structure (5.640 Å), with a possible B2 disorder. In addition, nanocrystalline structure with an average grain size, Dg = 17.8 nm, and crystalline phase content of about 52% was obtained. The magnetic measurements indicated a well-defined magnetic anisotropy for all ranges of temperature. Moreover, soft magnetic behavior was observed for the temperature measuring range of 5–1000 K. Strong dependence of the magnetic properties on the applied magnetic field and temperature was observed. Zero field cooling and field cooling magnetization curves showed large irreversibility magnetic behavior with a blocking temperature (TB = 205 K). The in-plane magnetization remanence and coercivity showed quite different behavior with temperature, due to the existence of different magnetic phases induced from the internal stress created by the glass-coated layer. Moreover, a high Curie temperature was reported (Tc ≈ 1059 K), which predisposes this material to being a suitable candidate for high temperature spintronic applications.
Collections
Except where otherwise noted, this item's license is described as © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses/by/
4.0/).