Crystallization Kinetics and Nanoparticle Ordering in Semicrystalline Polymer Nanocomposites
Ver/
Fecha
2022-03-13Autor
Altorbaq, Abdullah S.
Krauskopf, Alejandro A.
Wen, Xiangning
Pérez Camargo, Ricardo Arpad
Su, Yunlan
Wang, Dujin
Kumar, Sanat K.
Metadatos
Mostrar el registro completo del ítem
Progress in Polymer Science 128 : (2022) // Article ID 101527
Resumen
There has been considerable interest in the nucleation and crystallization of polymers in the presence of nanoparticles (NPs, or nanofillers in general, NFs). Most of the extensive work in this area has focused on anisotropic, non-Brownian NFs (e.g., clay sheets, carbon nanotubes) whose spatial dispersion state in these nanocomposites is controlled by the process by which they are formed. While NF spatial dispersion is thus generally poor, or poorly characterized, in many works, thermodynamic handles that can be used to control NF dispersion state in the polymer melt include (a) favorable interactions between the polymer chains and the bare NP surfaces, or (b) the density and length of the chains, with the same chemistry as the matrix, grafted to the NP surface. These relatively large NFs merely act as immovable objects that affect the kinetics of nucleation by providing heterogeneous sites, and the crystallization rate by confining the polymer in the melt state. The dispersion state of the NFs can dramatically
2
affect the nucleation and crystallization of the matrix, but in most cases reported, the NFs increase nucleation efficiency relative to the neat polymer. At higher NF loadings, the effect of polymer confinement by the NFs dominates, leading to a decrease in crystal growth rates. In this review, we first describe the most important lessons learned from these commonly studied systems and then use this knowledge to understand the results obtained when small, mobile spherical NPs (typically smaller than 100 nm in size) are used as the nanofillers.
The role of NP mobility, which provides for dynamic confinement of the polymer melt, on the kinetics of polymer crystallization (nucleation, growth, and overall crystallization) and how this behavior is mostly consistent with the case of immobile NF is a second important focus of our review. In addition to the role of NFs on crystallization kinetics, we discuss recently reported nanoparticle ordering phenomena, i.e., how the crystallization of polymers under appropriate conditions can move and organize small spherical NPs within the amorphous regions of the semicrystalline morphology. Such phenomena are clearly not observed for large NFs and hence provide a point of departure from past work in this well-traveled area.