Show simple item record

dc.contributor.authorMaiz Fernández, Sheila
dc.contributor.authorPérez Álvarez, Leyre
dc.contributor.authorSilván, Unai
dc.contributor.authorVilas Vilela, José Luis ORCID
dc.contributor.authorLanceros Méndez, Senentxu
dc.date.accessioned2022-09-15T17:38:31Z
dc.date.available2022-09-15T17:38:31Z
dc.date.issued2022-09
dc.identifier.citationInternational Journal of Biological Macromolecules 216 : 291-302 (2022)es_ES
dc.identifier.issn1879-0003
dc.identifier.urihttp://hdl.handle.net/10810/57747
dc.description.abstractBiocompatible and biodegradable hydrogels with biomimetic properties, such as self-repairing, are increasingly interesting for biomedical applications, particularly when they can be printed or in situ formed to mimic extracellular matrix or as personalized implantable devices in tissue regeneration or drug delivery. Photocrosslinkable hydrogels based on methacrylated chitosan (CHIMe) and hyaluronic acid that exhibit according with their composition, tuneable physico-chemical properties are here presented. The study of the conversion, gelation time, mechanical and rheological properties of photopolymerized CHIMe showed an optimal phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) initiator feed (0.1% w). These photocrosslinkable hydrogels demonstrated being able to promote doubly crosslinked hydrogels with similar Young Moduli regardless the cycles of self-healing processes, and tailored swelling (25-70 swelling factor), mechanical (1*10-4-2*10-2MPa) and rheological properties, as a function of polysaccharides relative content. Clear evidences have been found that fast photopolymerization of CHIMe/HA solutions leads to biocompatible (>80% cell viability), biodegradable (20-24days in hydrolytic medium) and robust self-healable hydrogels suitable for advanced biomedical and tissue engineering applications.es_ES
dc.description.sponsorshipThe authors acknowledge funding by Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the project PID2019-106099RB-C43/AEI/10.13039/501100011033, as well as, from the Basque Government Industry Department under the ELKARTEK program (KK-2021/00040). The authors thank Dra. Cristina Eguizabal for giving them access to the laboratory “Cell Therapy, Stem Cells and Tissue” at the Basque Center of Transfusion and Human at the Galdako hospital. Technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, EGEF and ESF) is gratefully acknowledged.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-106099RB-C43es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjecthydrogeles_ES
dc.subjectphotocrosslinkinges_ES
dc.subjectself-healinges_ES
dc.titlePhotocrosslinkable and self-healable hydrogels of chitosan and hyaluronic acid.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0141813022014283?via%3Dihubes_ES
dc.identifier.doi10.1016/j.ijbiomac.2022.07.004
dc.departamentoesQuímica físicaes_ES
dc.departamentoeuKimika fisikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Except where otherwise noted, this item's license is described as © 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).