Show simple item record

dc.contributor.authorAteka Bilbao, Ainara
dc.contributor.authorRodríguez Vega, Pablo
dc.contributor.authorEreña Loizaga, Javier
dc.contributor.authorAguayo Urquijo, Andrés Tomás ORCID
dc.contributor.authorBilbao Elorriaga, Javier
dc.date.accessioned2022-09-20T17:45:24Z
dc.date.available2022-09-20T17:45:24Z
dc.date.issued2022-08
dc.identifier.citationFuel Processing Technology 233 : (2022) // Article ID 107310es_ES
dc.identifier.issn0378-3820
dc.identifier.issn1873-7188
dc.identifier.urihttp://hdl.handle.net/10810/57798
dc.description.abstractThe direct synthesis of dimethyl ether (DME) on bifunctional catalysts is highly attractive for valorizing CO2 and syngas derived from biomass gasification and is a key process to reduce greenhouse gas emissions. DME economy (conventionally based on its use as fuel) arouses growing interest, in parallel with the development of different routes for its conversion into hydrocarbons (fuels and chemicals) and H-2 production. This review, after analyzing different routes and catalytic processes for the valorization of CO2, focuses on studies regarding the thermodynamics of the direct synthesis of DME and the advances in the development of new catalysts. Compared to the synthesis of methanol and the synthesis of DME in two stages, carrying out the reactions of methanol synthesis and its dehydration to DME in the same reactor favors the formation of DME from CO2 and from CO2 co-fed with syngas. Starting from the experience for syngas feedstocks, numerous catalysts have been studied. The first catalysts were physical mixtures or composites prepared by extrusion of methanol synthesis catalysts (CuO-ZnO with different carriers and promoters) and dehydration catalysts (mainly gamma-Al2O3 and HZSM-5 zeolite). The performance of the catalysts has been progressively improved with different modifications of the composition and properties of the components to upturn the activity (lower for the hydrogenation of CO2 than for CO) and selectivity, and to minimize the deactivation by coke and by sintering of the metallic function. The core-shell configuration of the bifunctional catalyst allows physically separating the environments of the reactions of methanol synthesis and its conversion into DME. The confinement facilitates the extent of both reactions and improves the stability of the catalyst, since the synergies of the deactivation mechanisms are eliminated.es_ES
dc.description.sponsorshipThis work has been carried out with the financial support of the Ministry of Science, Innovation and Universities of the Spanish Government (PID2019-108448RB-100); the Basque Government (Project IT1645-22); the European Regional Development Funds (ERDF); and the European Commission (HORIZON H2020-MSCA RISE-2018. Contract No. 823745).es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/823745es_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PID2019-108448RB-100es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectDMEes_ES
dc.subjectsyngases_ES
dc.subjectfuelses_ES
dc.subjectbifunctional catalystes_ES
dc.subjectthermodynamicses_ES
dc.subjectcore-shell catalystes_ES
dc.titleA review on the valorization of CO2. Focusing on the thermodynamics and catalyst design studies of the direct synthesis of dimethyl etheres_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)es_ES
dc.rights.holderAtribución-NoComercial-SinDerivadas 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0378382022001503?via%3Dihubes_ES
dc.identifier.doi10.1016/j.fuproc.2022.107310
dc.contributor.funderEuropean Commission
dc.departamentoesIngeniería químicaes_ES
dc.departamentoeuIngeniaritza kimikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Except where otherwise noted, this item's license is described as © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)