Show simple item record

dc.contributor.authorPascazio, Roberta
dc.contributor.authorZaccaria, Francesco
dc.contributor.authorVan Beek, Bas
dc.contributor.authorInfante, Iván
dc.date.accessioned2022-09-30T11:15:36Z
dc.date.available2022-09-30T11:15:36Z
dc.date.issued2022-07-16
dc.identifier.citationJournal of Physical Chemistry C 126(23) : 9898-9908 (2022)es_ES
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.urihttp://hdl.handle.net/10810/57877
dc.description.abstractUnderstanding the chemico-physical properties of colloidal semiconductor nanocrystals (NCs) requires exploration of the dynamic processes occurring at the NC surfaces, in particular at the ligand-NC interface. Classical molecular dynamics (MD) simulations under realistic conditions are a powerful tool to acquire this knowledge because they have good accuracy and are computationally cheap, provided that a set of force-field (FF) parameters is available. In this work, we employed a stochastic algorithm, the adaptive rate Monte Carlo method, to optimize FF parameters of cesium lead halide perovskite (CsPbBr3) NCs passivated with typical organic molecules used in the synthesis of these materials: oleates, phosphonates, sulfonates, and primary and quaternary ammonium ligands. The optimized FF parameters have been obtained against MD reference trajectories computed at the density functional theory level on small NC model systems. We validated our parameters through a comparison of a wide range of nonfitted properties to experimentally available values. With the exception of the NC-phosphonate case, the transferability of the FF model has been successfully tested on realistically sized systems (>5 nm) comprising thousands of passivating organic ligands and solvent molecules, just as those used in experiments.es_ES
dc.description.sponsorshipComputational Sciences for Energy Research (CSER) Joint CSER & eScience Research Programme 2017 grant from the Netherlands Organization of Scientific Research (NWO) with number 680-91-086es_ES
dc.language.isoenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectquantum dotses_ES
dc.subjectmolecular-mechanicses_ES
dc.subjectcarrier mobilitieses_ES
dc.subjectcharge-transferes_ES
dc.subjectMonte-Carloes_ES
dc.subjectphotoluminescencees_ES
dc.subjectBRes_ES
dc.subjectefficiencyes_ES
dc.subjectdynamicses_ES
dc.subjectCLes_ES
dc.titleClassical Force-Field Parameters for CsPbBr3 Perovskite Nanocrystalses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2022 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c00600es_ES
dc.identifier.doi10.1021/acs.jpcc.2c00600
dc.departamentoesCiencia y tecnología de polímeroses_ES
dc.departamentoeuPolimeroen zientzia eta teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as © 2022 The Authors. Published by American Chemical Society. Attribution 4.0 International (CC BY 4.0)