Show simple item record

dc.contributor.authorPolo da Fonseca, Lucas
dc.contributor.authorDuval, A.
dc.contributor.authorLuna Barrios, Emelin Yhoany
dc.contributor.authorXimenis, Marta
dc.contributor.authorDe Meester, Steven
dc.contributor.authorAvérous, L.
dc.date.accessioned2023-06-19T17:42:50Z
dc.date.available2023-06-19T17:42:50Z
dc.date.issued2023-06
dc.identifier.citationCurrent Opinion in Green and Sustainable Chemistry 41 : (2023) // Article ID 100802es_ES
dc.identifier.issn2452-2236
dc.identifier.urihttp://hdl.handle.net/10810/61477
dc.description.abstractPolyurethanes (PUs) are one of the most widely employed classes of polymers, with a continuously increasing production demand that is expected to reach around 21 million tons in 2022. Due to the simple polymerization process by which they are produced, the versatility in PU chemistry, and the strong inter/intramolecular interactions present between urethane moieties, these robust materials can be used in diverse applications ranging from elastomers to foams. However, this high versatility, combined with the high stability of the urethane bond and the chemically cross-linked nature of most commercial PUs, leads to long-lasting, potentially contaminating, PU waste in landfill sites. While many strategies are under investigation to improve the end-of-life options for polyurethanes, in this review we focus primarily on the latest advances in the chemical and biological routes for PU recycling. These two routes can potentially allow for monomer recovery and reuse for further synthesis of PUs, achieving materials with identical properties to the virgin materials. Aside from reviewing the latest advances in the field, we will highlight the importance of using life cycle assessment (LCA) to find a truly sustainable solution to landfilling and to incentivize the implementation of chemical and biological recycling approaches at the industrial scale.es_ES
dc.description.sponsorshipH.S. thank the Spanish Ministry for the excellence Grant POLYCE and the Basque University for the EHUrOPE grant. L.P.F. thanks the ADAGIO: Advanced Manufacturing Research Fellowship Programme in the Basque – New Aquitaine Region.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectpolyurethanees_ES
dc.subjectdepolymerizationes_ES
dc.subjectrecyclinges_ES
dc.subjectlife-cycle analysises_ES
dc.subjectenzymatices_ES
dc.titleReducing the carbon footprint of polyurethanes by chemical and biological depolymerization: Fact or fiction?es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2023 Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S2452223623000512es_ES
dc.identifier.doi10.1016/j.cogsc.2023.100802
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023 Elsevier B.V. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as © 2023 Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).