Abstract
Ordinary differential equations (ODE) have long been an important tool for modelling and understanding the dynamics of many real systems. However, mathematical modelling in several areas of the life sciences requires the use of time-delayed differential models (DDEs). The time delays in these models refer to the time required for the manifestation of certain hidden processes, such as the time between the onset of cell infection and the production of new viruses (incubation periods), the infection period, or the immune period. Since real biological systems are always subject to perturbations that are not fully understood or cannot be explicitly modeled, stochastic delay differential systems (SDDEs) provide a more realistic approximation to these models. In this work, we study the predator–prey system considering three time-delay models: one deterministic and two types of stochastic models. Our numerical results allow us to distinguish between different asymptotic behaviours depending on whether the system is deterministic or stochastic, and in particular, when considering stochasticity, we see that both the nature of the stochastic systems and the magnitude of the delay play a crucial role in determining the dynamics of the system.