dc.contributor.author | Colom Serra, Mateu | |
dc.contributor.author | Bedoya Pérez, Adrián Felipe | |
dc.contributor.author | Mendioroz Astigarraga, María Aránzazu | |
dc.contributor.author | Salazar Hernández, Agustín | |
dc.date.accessioned | 2023-11-21T15:38:50Z | |
dc.date.available | 2023-11-21T15:38:50Z | |
dc.date.issued | 2020-01-21 | |
dc.identifier.citation | International Journal of Thermal Sciences 151 (2020) // Article ID 106277 | es_ES |
dc.identifier.issn | 1290-0729 | |
dc.identifier.uri | http://hdl.handle.net/10810/63091 | |
dc.description.abstract | In this work we deal with samples that move at constant speed and are illuminated by a modulated and focused
laser beam. We have obtained a general expression for the surface temperature of these moving samples: it is
valid not only for opaque and thermally thick materials, but also for thermally thin and semitransparent samples.
Moreover, heat losses by convection and radiation are taken into account in the model. Numerical calculations
indicate that the temperature (amplitude and phase) profiles in the directions parallel and perpendicular to the
sample motion are straight lines with respect to the distance to the laser spot. The slopes of these straight lines
depend on sample speed, modulation frequency and in-plane thermal diffusivity of the sample. Provided the two
first experimental parameters are known, the in-plane thermal diffusivity can be retrieved in a simple manner.
Measurements performed on materials covering a wide range of thermal diffusivity values, from insulators to
good thermal conductors, confirm the validity of these linear methods. | es_ES |
dc.description.sponsorship | This work has been supported by Ministerio de Economía y Competitividad (DPI2016-77719-R, AEI/FEDER, UE), by Universidad del País Vasco UPV/EHU (GIU16/33) and by Gobierno Vasco (PIBA2018/15). A. Bedoya greatly thanks the support of CONACyT through the Beca Mixta Program for a research stay at the UPV/EHU. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO/DPI2016-77719-R, | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | infrared thermography | es_ES |
dc.subject | lock-in thermography | es_ES |
dc.subject | thermal diffusivity | es_ES |
dc.subject | photothermal techniques | es_ES |
dc.title | Measuring the in-plane thermal diffusivity of moving samples using laser spot lock-in thermography | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2020 Elsevier under CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) | es_ES |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S1290072919312360 | es_ES |
dc.identifier.doi | 10.1016/j.ijthermalsci.2020.106277 | |
dc.departamentoes | Física aplicada I | es_ES |
dc.departamentoeu | Fisika aplikatua I | es_ES |