From field-induced to zero-field SMMs associated with open/closed structures of bis(ZnDy) tetranuclear complexes: a combined magnetic, theoretical and optical study
Ver/
Fecha
2024-05Autor
Zabala Lekuona, Andoni
López de Pariza Sanz, Xabier
Díaz Ortega, Ismael F.
Cepeda Ruiz, Javier
Nojiri, Hyroyuki
Gritsan, Nina P.
Dmitriev, Alexey A.
López Ortega, Alberto
Rodríguez Diéguez, Antonio
Colacio, Enrique
Metadatos
Mostrar el registro completo del ítem
Dalton Transactions 53(18) : 7971-7984 (2024)
Resumen
We have prepared a bis(compartmental) Mannich base ligand H4L (1,4,8,11-tetraaza-1,4,8,11-tetrakis(2-hydroxy-3-methoxy-5-methylbenzyl)cyclotetradecane) specifically designed to obtain bis(TMIILnIII) tetranuclear complexes (TM = transition metal). In this regard, we have succeeded in obtaining three new complexes of the formula [Zn2(μ-L)(μ-OAc)Dy2(NO3)2]·[Zn2(μ-L)(μ-OAc)Dy2(NO3)(OAc)]·4CHCl3·2MeOH (1) and [TM2(μ-H2L)2(μ-succinate)Ln2(NO3)2] (NO3)2·2H2O·6MeOH (TMII = Zn, LnIII = Dy (2); TMII = Co, LnIII = Dy (3)). Compound 1 contains two different bis(ZnDy) tetranuclear molecules that cocrystallize in the structure, in which acetato bridging ligands connect the ZnII and DyIII ions within each ZnDy subunit. This compound does not exhibit slow magnetic relaxation at zero field, but it is activated in the presence of an applied dc magnetic field and/or by Dy/Y magnetic dilution, showing two relaxation processes corresponding to each of the two different bis(ZnDy) units found in the structure. As revealed by the theoretical calculations, magnetic relaxation in 1 is single-ion in origin and takes place through the first excited state of each DyIII ion. When using the succinato dicarboxylate bridging ligand instead of acetate, compounds 2 and 3 were serendipitously formed, which have a closed structure with the succinate anion bridging two ZnDy subunits belonging to two different ligands. It should be noted that only compound 2 exhibits slow relaxation of magnetization in the absence of an external magnetic field. According to experimental and theoretical data, 2 relaxes through the second excited Kramers doublet (Ueff = 342 K). In contrast, 3 displays field-induced SMM behaviour (Ueff = 203 K). However, the Co/Zn diluted version of this compound 3Zn shows slow relaxation at zero field (Ueff = 347 K). Ab initio theoretical calculations clearly show that the weak ferromagnetic coupling between CoII and DyIII ions is at the origin of the lack of slow relaxation of this compound at zero field. Compound 2 and its diluted analogues 2Y and 3Zn show hysteresis loops at very low temperature, thus confirming their SMM behaviour. Finally, compounds 1 and 2 show DyIII based emission even at room temperature that, in the case of 2, allows us to extract the splitting of the ground 6H15/2 term, which matches reasonably well with theoretical calculations.