A molecular perspective on the emergence of long-range polar order from an isotropic fluid
Journal of Molecular Liquids 407 : (2024) // Article ID 125188
Laburpena
The ferroelectric nematic phase (NF) has quickly become the most studied system in liquid crystal research. In this work, we investigate the origin of such polar structure by studying a compound for which the NF phase directly follows the isotropic liquid phase on cooling, making it a particularly interesting system. Our experimental results evidence the presence of polar correlations already in the high-temperature phase, in which ferroelectric order can be induced under a sufficiently strong electric field. In the NF phase, molecular dynamics and polar correlations are investigated through detailed dynamic dielectric measurements, while second harmonic generation experiments evidence a large value of the main coefficient of the second order dielectric susceptibility tensor. Lastly, experimentally determined parameters are employed for calculations based on a recently proposed theoretical model for the stability of the NF phase. The obtained results suggest that the parallel alignment of dipoles is driven by a subtle interplay between electrostatic and excluded volume interactions.