Fabrikazio gehigarri eta digitalizazio bidezko zulagailu aeronautikoaren diseinu-optimizazioa
Fecha
2024Autor
Ortega Rodríguez, Naiara
Galleguillos Rioboo, Carlos
Metadatos
Mostrar el registro completo del ítem
Ekaia 46 : 327-339 (2024)
Resumen
Geometria konplexuei, diseinu pertsonalizatuei eta ezaugarri funtzionalei eskerrak, osagai berrien garapenerako prozesurik eta berritzaileenetakoa bihurtu da fabrikazio gehigarri metalikoa. Horregatik, lan honetan aeronautikako sektorean erabiliko den zulagailu industrial baten karkasaren diseinua optimizatzeko fabrikazio gehigarriaren gaitasuna aztertu da. Ikerlan honen helburua zulagailuaren tenperatura kontrolatu eta mugako balio onargarrien azpitik mantentzea da, horrela modu jarraituan erabili ahal izateko eta eragiketaren produktibitatea handitzeko. Zulagailuaren portaera aztertu eta diseinua optimizatzeko, haren digitalizazioa gauzatu da ANSYS Workbench 2021-R2 softwarearen bidez, eta emaitzen baliotasuna bermatzeko metodologia zorrotzari jarraitu zaio. Lehenengo pausuan, zulagailuaren diseinuan erabiliko diren gainazal mota ezberdinen (laua, erretikularra, gyroidea, hegalduna, eta abar) portaera analizatu da, bakoitzaren beroa disipatzeko gaitasuna zenbatesteko. Ostean, bigarren pausuan, egungo zulagailuaren diseinuaren portaera aztertu eta barruko bero-iturria karakterizatu da. Horrekin guztiarekin, zulagailuaren karkasaren diseinu berri bat proposatu da, funtzionaltasuna mantenduz, baina hozketa gaitasuna hobetuz. Behin diseinu berria erabakita, hauts ohantzeko teknologia bidez (laser Powder Bed Fusion, L-PBF) fabrikatu da eta esperimentalki baieztatu da haren funtzionamendu zuzena.; Metal Additive Manufacturing has established itself as one of the most promising alternatives for the development of new components thanks to its ability to obtain complex geometries, customized designs, and functional characteristics. For this reason, the present work has analyzed the capacity of additive manufacturing to optimize the design of the casing of an industrial drill for aeronautical use. The motivation of the research lies in the need to control the temperature of the drill and keep it below admissible values, which allows its continuous use and thus increase the productivity of the operation. To develop a functional and optimized design, the behavior of the drill is digitized using ANSYS Workbench 2021-R2 software, and to ensure the validity of the digital model, a precise methodology is followed. In the first step, the thermal behavior of the different types of surfaces (flat, reticular, gyroid, lattice, etc.) is characterized to determine the heat dissipation capacity of each of them. Subsequently, in a second step, the thermal behavior of the original drill is simulated to characterize the internal heat source and its thermal behavior. With all this knowledge, a new design of the drill casing is proposed based on the results of the simulations: maintaining the functionality, but improving the cooling capacity. Once the new design is defined, it has been fabricated using laser Powder Bed Fusion (L-PBF) technology and its correct operation has been experimentally validated.