Show simple item record

dc.contributor.authorFernández Macho, Francisco Javier ORCID
dc.date.accessioned2013-11-07T15:51:30Z
dc.date.available2013-11-07T15:51:30Z
dc.date.issued2013-11
dc.identifier.issn1134-8984
dc.identifier.urihttp://hdl.handle.net/10810/10862
dc.description.abstractIn a recent paper Leong-Huang:2010 {Journal of Applied Statistics 37, 215–233} proposed a wavelet-correlation-based approach to test for cointegration between two time series. However, correlation and cointegration are two different concepts even when wavelet analysis is used. It is known that statistics based on nonstationary integrated variables have non-standard asymptotic distributions. However, wavelet analysis offsets the integrating order of nonstationary series so that traditional asymptotics on stationary variables suffices to ascertain the statistical properties of wavelet-based statistics. Based on this, this note shows that wavelet correlations cannot be used as a test of cointegration.es
dc.language.isoenges
dc.relation.ispartofseriesBiltoki;2013.04
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjecteconometric methodses
dc.subjectintegrated processes
dc.subjectspectral analysises
dc.subjecttime series modelses
dc.subjectunit rootses
dc.subjectwavelet analysis.es
dc.titleA Note on Wavelet Correlation and Cointegrationes
dc.typeinfo:eu-repo/semantics/articlees
dc.subject.jelC22es
dc.subject.jelC12es
dc.identifier.repecRePEc:ehu:biltok:10862es
dc.departamentoesEconomía aplicada III (Econometría y Estadística)es_ES
dc.departamentoeuEkonomia aplikatua III (ekonometria eta estatistika)es_ES
dc.subject.categoriaMATHEMATICAL AND QUANTITATIVE METHODS


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record