Show simple item record

dc.contributor.advisorGarcia-Arrona, Rosa
dc.contributor.advisorMillán, Esmeralda
dc.contributor.authorBordagaray Eizaguirre, Ane ORCID
dc.contributor.otherQuímica aplicadaes
dc.date.accessioned2016-07-07T11:13:02Z
dc.date.available2016-07-07T11:13:02Z
dc.date.issued2016-07-07
dc.date.submitted2015-04-17
dc.identifier.isbn978-84-9082-432-0
dc.identifier.urihttp://hdl.handle.net/10810/18571
dc.description.abstractAgricultural crops can be damaged by funguses, insects, worms and other organisms that cause diseases and decrease the yield of production. The effect of these damaging agents can be reduced using pesticides. Among them, triazole compounds are effective substances against fungus; for example, Oidium. Nevertheless, it has been detected that the residues of these fungicides in foods as well as in derivate products can affect the health of the consumers. Therefore, the European Union has established several regulations fixing the maximum residue of pesticide levels in a wide range of foods trying to assure the consumer safety. Hence, it is very important to develop adequate methods to determine these pesticide compounds. In most cases, gas or liquid chromatographic (GC, LC) separations are used in the analysis of the samples. But firstly, it is necessary to use proper sample treatments in order to preconcentrate and isolate the target analytes. To reach this aim, microextraction techniques are very effective tools; because allow to do both preconcentration and extraction of the analytes in one simple step that considerably reduces the source of errors. With these objectives, two remarkable techniques have been widely used during the last years: solid phase microextraction (SPME) and liquid phase microextraction (LPME) with its different options. Both techniques that avoid the use or reduce the amount of toxic solvents are convenient coupled to chromatographic equipments providing good quantitative results in a wide number of matrices and compounds. In this work simple and reliable methods have been developed using SPME and ultrasound assisted emulsification microextraction (USAEME) coupled to GC or LC for triazole fungicides determination. The proposed methods allow confidently determine triazole concentrations of μg L‐1 order in different fruit samples. Chemometric tools have been used to accomplish successful determinations. Firstly, in the selection and optimization of the variables involved in the microextraction processes; and secondly, to overcome the problems related to the overlapping peaks. Different fractional factorial designs have been used for the screening of the experimental variables; and central composite designs have been carried out to get the best experimental conditions. Trying to solve the overlapping peak problems multivariate calibration methods have been used. Parallel Factor Analysis 2 (PARAFAC2), Multivariate Curve Resolution (MCR) and Parallel Factor Analysis with Linear Dependencies (PARALIND) have been proposed, the adequate algorithms have been used according to data characteristics, and the results have been compared. Because its occurrence in Basque Country and its relevance in the production of cider and txakoli regional wines the grape and apple samples were selected. These crops are often treated with triazole compounds trying to solve the problems caused by the funguses. The peel and pulp from grape and apple, their juices and some commercial products such as musts, juice and cider have been analysed showing the adequacy of the developed methods for the triazole determination in this kind of fruit samples.es
dc.language.isoenges
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectMicroextraction, chromatography, triazole fungicideses
dc.titleDevelopment of procedures for the triazole fungicides determination in fruits and liquid samples using microextraction techniques and chromatographic separationes
dc.title.alternativeMikroerauzketa teknika eta banaketa kromatografikoan oinarritutako prozeduren garapena triazol fungiziden determinaziorako fruitu eta likido laginetanes
dc.typeinfo:eu-repo/semantics/doctoralThesises
dc.rights.holderAttribution-ShareAlike 4.0 International*
dc.identifier.studentID311473
dc.identifier.projectID339
dc.departamentoesQuímica aplicadaes_ES
dc.departamentoeuKimika aplikatuaes_ES


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-ShareAlike 4.0 International