Show simple item record

dc.contributor.authorEscudero Bueno, Laureano F.
dc.contributor.authorGarín Martín, María Araceli ORCID
dc.contributor.authorMerino Maestre, María ORCID
dc.contributor.authorPérez Sainz de Rozas, Gloria ORCID
dc.date.accessioned2011-12-21T17:39:50Z
dc.date.available2011-12-21T17:39:50Z
dc.date.issued2011-02
dc.identifier.issn1134-8984
dc.identifier.urihttp://hdl.handle.net/10810/5576
dc.descriptionPreprint submitted to Computers & Operations Researches
dc.description.abstractIn this paper we present a parallelizable scheme of the Branch-and-Fix Coordination algorithm for solving medium and large scale multi-stage mixed 0-1 optimization problems under uncertainty. The uncertainty is represented via a nonsymmetric scenario tree. An information structuring for scenario cluster partitioning of nonsymmetric scenario trees is also presented, given the general model formulation of a multi-stage stochastic mixed 0-1 problem. The basic idea consists of explicitly rewriting the nonanticipativity constraints (NAC) of the 0-1 and continuous variables in the stages with common information. As a result an assignment of the constraint matrix blocks into independent scenario cluster submodels is performed by a so-called cluster splitting-compact representation. This partitioning allows to generate a new information structure to express the NAC which link the related clusters, such that the explicit NAC linking the submodels together is performed by a splitting variable representation. The new algorithm has been implemented in a C++ experimental code that uses the open source optimization engine COIN-OR, for solving the auxiliary linear and mixed 0-1 submodels. Some computational experience is reported to validate the new proposed approach. We give computational evidence of the model tightening effect that have preprocessing techniques in stochastic integer optimization as well, by using the probing and Gomory and clique cuts identification and appending schemes of the optimization engine.es
dc.description.sponsorshipThis research has been partially supported by the projects ECO2008-00777 ECON from the Ministry of Education and Science, Grupo de Investigación IT-347-10 from the Basque Government, URJC-CM-2008-CET-3703 and RIESGOS CM from Comunidad de Madrid, and PLANIN MTM2009-14087-C04-01 from Ministry of Science and Innovation, Spain.es
dc.language.isoenges
dc.relation.ispartofseriesBiltoki 2011.01
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjectmulti-stage stochastic mixed 0-1 optimizationes
dc.subjectnonsymmetric scenario treeses
dc.subjectimplicit and explicit nonanticipativity constraintses
dc.subjectsplitting variable and compact representationses
dc.subjectscenario cluster partitioninges
dc.titleA parallelizable algorithmic framework for solving large scale multi-stage stochastic mixed 0-1 problems under uncertaintyes
dc.typeinfo:eu-repo/semantics/workingPaperes
dc.identifier.repecRePEc:ehu:biltok:201101es
dc.departamentoesMatemática Aplicada, Estadística e Investigación Operativaes_ES
dc.departamentoesEconomía aplicada III (Econometría y Estadística)es_ES
dc.departamentoeuMatematika aplikatua eta estatistikaes_ES
dc.departamentoeuEkonomia aplikatua III (ekonometria eta estatistika)es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record