Show simple item record

dc.contributor.advisorPedraz Muñoz, José Luis ORCID
dc.contributor.authorSainz Ramos, Myriam
dc.date.accessioned2022-03-25T10:42:09Z
dc.date.available2022-03-25T10:42:09Z
dc.date.issued2022-03-17
dc.date.submitted2022-03-17
dc.identifier.urihttp://hdl.handle.net/10810/56074
dc.description246 p.es_ES
dc.description.abstractGene therapy is based on the delivery of exogenous genetic material into target cells to modulate theexpression of an altered genome in order to treat a specific disease. Lipid nanocarriers, such as niosomesbased on cationic lipids, non-ionic surfactants and ¿helper¿ components, are considered attractivecandidate for non-viral vectors due to their suitable biocompatibility and high versatility. The niosomechemical composition and their elaboration method influence the biophysical properties which have animpact on transfection efficiency and cytotoxicity. Indeed, compounds with specific properties have beenincluded to overcome some disadvantages of niosome formulations, such as chloroquine, which promotesendosomal escape. Gene therapy can be an excellent treatment for many disorders, in particular cysticfibrosis that is an autosomal monogenic recessive disease caused by different mutations in the cysticfibrosis conductance regulator (CFTR) gene. In this doctoral thesis, we focused on the development andin-depth biophysical and biological characterization of non-viral vectors based on cationic niosomes toface cystic fibrosis by gene therapy approach. The data obtained support that the inclusion of thechloroquine molecule in niosome formulations improves the biophysical properties of niosomes withenhanced transfection efficiencies and lower cytotoxicity. In addition, these niosomes are able to increasethe production of functional CFTR protein in cystic fibrosis cells. Furthermore, the development of athree-dimensional scaffold that better mimics the in vivo environment showed utility for evaluating newtreatments and different schedules of administration for cystic fibrosis.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/*
dc.subjectcomposition of drugses_ES
dc.subjectevaluation of drugses_ES
dc.subjectpreparation of drugses_ES
dc.titleDevelopment and characterization of non-viral vectors based on cationic niosomes to address cystic fibrosis disease by gene therapy approaches_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.holderAtribución-NoComercial-CompartirIgual 3.0 España*
dc.rights.holder(cc) 2022 Myriam Sainz Ramos (cc by-nc-sa 4.0)
dc.identifier.studentID716774es_ES
dc.identifier.projectID20506es_ES
dc.departamentoesFarmacia y ciencias de los alimentoses_ES
dc.departamentoeuFarmazia eta elikagaien zientziakes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 3.0 España