Show simple item record

dc.contributor.advisorMatxain Beraza, Jon Mattin ORCID
dc.contributor.advisorMercero Larraza, José María ORCID
dc.contributor.authorTelleria Allika, Xabier
dc.date.accessioned2023-01-10T16:20:16Z
dc.date.available2023-01-10T16:20:16Z
dc.date.issued2022-10-05
dc.date.submitted2022-10-05
dc.identifier.urihttp://hdl.handle.net/10810/59199
dc.descriptionx, 147 p.es_ES
dc.description.abstractOnce the state of the art concerning Wigner molecules, Hooke atoms and some machine learningtechniques has been described, in this section the main goals of the present work will be provided. Weshall now list the mains goals of this work:1. Optimize distributed gaussian basis functions for correctly describing the one- and two-dimensionallyconfined electronic systems by means of machine learning approaches (Neural Networks) for variableconfinement parameter k = ¿2 . Besides, set an optimal wavefunction based electronic structure methodfor obtaining accurate wavefunctions. Employ the settled protocole in order to study the Wigner locationfor small number of electrons n = {2, 3, 4} in the high spin state.2. Optimize one-centre even tempered basis functions using classical optimiza tion techniques (simplexand Newton-Raphson) for properly describing three dimensional spherical Hooke atoms composed byfew number of electrons n = {2, 4, 6, 8, 10} and confinement parameter k = ¿2= 1/4. Settle an optimalwavefunction based method for obtaining accurate energies for the lowest laying singlet and triplet states.3. Implement and improve machine learning methods based on semi-supervised learning and uncertaintysampling for obtaining phase diagrams efficiently and provide some chemically relevant systems.4. Calculate analytical one-body integrals corresponding to gaussian confinement potentials in terms ofgaussian basis functions and implement them in GAMESS-US. Provide some examples related to theprevious sections.es_ES
dc.language.isoenges_ES
dc.language.isoeuses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subjectquantum theoryes_ES
dc.titleComputational study of statically confined electron systems by means of quantum chemical and machine learning techniqueses_ES
dc.title.alternativeEstakikoki Konfinatutako Elektroi Sistemen Azterketa Konputazionala Machine Learning eta Kimika Kuantikoko Metodoak Erabilizes_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.holder(cc) 2022 Xabier Telleria Allika (cc by-nc-nd 4.0)*
dc.identifier.studentID658160es_ES
dc.identifier.projectID20567es_ES
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnologíaes_ES
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologiaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

(cc) 2022 Xabier Telleria Allika (cc by-nc-nd 4.0)
Except where otherwise noted, this item's license is described as (cc) 2022 Xabier Telleria Allika (cc by-nc-nd 4.0)