Mostrar el registro sencillo del ítem

dc.contributor.advisorAyesta Morate, Urtzi
dc.contributor.advisorAvram, Florin
dc.contributor.authorRobledo Relaño, Francisco
dc.date.accessioned2025-02-07T10:54:09Z
dc.date.available2025-02-07T10:54:09Z
dc.date.issued2024-10-11
dc.date.submitted2024-10-11
dc.identifier.urihttp://hdl.handle.net/10810/72334
dc.description125 p.es_ES
dc.description.abstractThis thesis presents significant advancements in Reinforcement Learning (RL) algorithms for resource and policy management in Restless Multi-Armed Bandit (RMAB) problems. The research introduces two main approaches: for discrete and binary actions, QWI and QWINN algorithms compute Whittle indices to simplify policy determination by decoupling RMAB processes, with QWINN leveraging neural networks for Q-value computation and demonstrating better convergence rates and scalability compared to QWI; for continuous actions, the LPCA algorithm employs a Lagrangian relaxation to decouple Weakly Coupled Markov Decision Processes (MDPs), using differential evolution and greedy optimization strategies for efficient resource allocation, and showing superior performance over other RL approaches. Empirical results from simulations validate the effectiveness of these algorithms, representing a substantial contribution to resource allocation in RL and providing a foundation for future research into more generalized and scalable RL frameworks.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/*
dc.titleAdvanced Reinforcement Learning Algorithms for Multi-Armed Bandit Problemses_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.holderAtribución-NoComercial-CompartirIgual 3.0 España*
dc.rights.holder(cc) 2024 Francisco Robledo Relaño (cc by-nc-sa 4.0)
dc.identifier.studentID989164es_ES
dc.identifier.projectID23589es_ES
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES


Ficheros en el ítem

No Thumbnail [100%x80]
No Thumbnail [100%x80]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-CompartirIgual 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 3.0 España