Show simple item record

dc.contributor.advisorPatrick, Jon D.
dc.contributor.advisorOronoz Anchordoqui, Maite
dc.contributor.authorPérez de Viñaspre Garralda, Olatz ORCID
dc.date.accessioned2018-03-16T10:22:24Z
dc.date.available2018-03-16T10:22:24Z
dc.date.issued2017-06-19
dc.date.submitted2017-06-19
dc.identifier.urihttp://hdl.handle.net/10810/25735
dc.description211 p. (eusk.) 148 p. (eng.)es_ES
dc.description.abstractTesi-lan honetan, terminoak automatikoki euskaratzeko sistemak garatu eta ebaluatu ditugu. Horretarako,SNOMED CT, terminologia kliniko zabala barnebiltzen duen ontologia hartu dugu abiapuntutzat, etaEuSnomed deritzon sistema garatu dugu horren euskaratzea kudeatzeko. EuSnomedek lau urratsekoalgoritmoa inplementatzen du terminoen euskarazko ordainak lortzeko: Lehenengo urratsak baliabidelexikalak erabiltzen ditu SNOMED CTren terminoei euskarazko ordainak zuzenean esleitzeko. Besteakbeste, Euskalterm banku terminologikoa, Zientzia eta Teknologiaren Hiztegi Entziklopedikoa, eta GizaAnatomiako Atlasa erabili ditugu. Bigarren urratserako, ingelesezko termino neoklasikoak euskaratzekoNeoTerm sistema garatu dugu. Sistema horrek, afixu neoklasikoen baliokidetzak eta transliterazio erregelakerabiltzen ditu euskarazko ordainak sortzeko. Hirugarrenerako, ingelesezko termino konplexuak euskaratzendituen KabiTerm sistema garatu dugu. KabiTermek termino konplexuetan agertzen diren habiaratutakoterminoen egiturak erabiltzen ditu euskarazko egiturak sortzeko, eta horrela termino konplexuakosatzeko. Azken urratsean, erregeletan oinarritzen den Matxin itzultzaile automatikoa osasun-zientziendomeinura egokitu dugu, MatxinMed sortuz. Horretarako Matxin domeinura egokitzeko prestatu dugu,eta besteak beste, hiztegia zabaldu diogu osasun-zientzietako testuak itzuli ahal izateko. Garatutako lauurratsak ebaluatuak izan dira metodo ezberdinak erabiliz. Alde batetik, aditu talde txiki batekin egin dugulehenengo bi urratsen ebaluazioa, eta bestetik, osasun-zientzietako euskal komunitateari esker egin dugunMedbaluatoia kanpainaren baitan azkeneko bi urratsetako sistemen ebaluazioa egin da.es_ES
dc.language.isoenges_ES
dc.language.isoeuses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectartificial intelligencees_ES
dc.subjectmachine translationes_ES
dc.subjectinteligencia artificiales_ES
dc.subjecttraducción automáticaes_ES
dc.titleOsasun-alorreko termino-sorkuntza automatikoa: SNOMED CTren eduki terminologikoaren euskaratzeaes_ES
dc.title.alternativeAutomatic medical term generation for a low-resource language: translation of SNOMED CT into Basquees_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.holderAtribución 3.0 España*
dc.rights.holder(cc)2017 OLATZ PEREZ DE VIÑASPRE GARRALDA (cc by 4.0)
dc.identifier.studentID328324es_ES
dc.identifier.projectID15386es_ES
dc.departamentoesLenguajes y sistemas informáticoses_ES
dc.departamentoeuHizkuntza eta sistema informatikoakes_ES


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España