Show simple item record

dc.contributor.advisorZabala Unzalu, Miren Nerea
dc.contributor.authorZurutuza García, Jon
dc.contributor.otherF. CIENCIA Y TECNOLOGIA
dc.contributor.otherZIENTZIA ETA TEKNOLOGIA F.
dc.date.accessioned2018-12-21T17:29:34Z
dc.date.available2018-12-21T17:29:34Z
dc.date.issued2018-12-21
dc.identifier.urihttp://hdl.handle.net/10810/30525
dc.description.abstract[EU] Historian zehar, lebitazio-fenomenoek gizakiongan jakin-nahi handia sorrarazi dute. Lebitazio-metodo desberdinak garatu dira, ikerketa eta aplikazio teknologikoetarako, eta baita jostailu edo gadget modura ere, besteak beste, aerodinamikoa, akustikoa, optikoa, elektrikoa eta magnetikoa. Horien artean, lebitazio magnetikoa oso emankorra bilakatu da, eta horren adibide ditugu marruskadura ekiditen duten Maglev trenak. Lebitazio magnetikoa lan honen ardatz nagusia bada ere, hasieran beste lebitazio-metodoen funtsak deskribatuko dira. Horrenbestez, lebitazio magnetikoa lortzeko behar diren baldintza fisikoak azalduko dira eta lebitatzen duen objektuaren egonkortasuna aztertzeko erabiltzen diren tresna matematikoen berri emango da. Adibide gisa, elektroimanen bidezko suspentsioa eta indukzio elektromagnetikoan oinarritzen den Thomson-en eraztunaren sistema deskribatuko dira. Ondoren, azken hamarkadetan zientzialarien arreta handia piztu duten bi materialetan oinarritutako lebitazioa deskribatuko da. Alde batetik, supereroaleek aurkezten duten Meissner efektuaren bidezko lebitazio magnetikoa eta, bestetik, metamaterialen bitartez lor daitezkeen lebitazio elektrikoa eta magnetikoa, eta horien oinarriak aztertuko dira.es_ES
dc.description.abstract[EN] Throughout history, levitation phenomena have been intriguing to humans. Different levitation methods have been developed for research and technological applications, as well as toys or gadgets,such as aerodynamic, acoustic, optic, electric and magnetic. Among them, magnetic levitation has become highly fruitful, with examples of Maglev trains that avoid friction. Although magnetic levitation is the main focus of this work, the bases of other levitation methods will be described at the beginning. Therefore, the physical conditions required to obtain magnetic levitation will be explained and the mathematical tools used to analyze the stability of the object that is levitated will be reported. As an example, suspension using electromagnets and the Thomson ring system, which is based on electromagnetic induction, will be described. Next, the levitation based on two materials that have sparked scientists’ interest over the last decades will be described. On the one hand, the magnetic levitation through the Meissner effect in superconductors and, on the other hand, the electric and magnetic levitation that can be obtained through metamaterials, and their bases will be analyzed.
dc.language.isoeuses_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectlebitazio magnetikoaes_ES
dc.subjectMaglev
dc.subjectmagnetic levitation
dc.subjectThomson ring system
dc.subjectMeissner
dc.subjectsuperconductor
dc.subjectThomson-en eraztunaren sistema
dc.titleLebitazio magnetikoaren oinarri fisikoakes_ES
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.date.updated2018-06-22T07:39:08Z
dc.language.rfc3066es
dc.rights.holder© 2018, Jon Zurutuza García
dc.contributor.degreeFisikako Graduaes_ES
dc.identifier.gaurregister88424-738286-09
dc.identifier.gaurassign66918-738286


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record