Show simple item record

dc.contributor.advisorAgirre Bengoa, Eneko ORCID
dc.contributor.advisorLabaka Intxauspe, Gorka ORCID
dc.contributor.authorArtexe Zurutuza, Mikel
dc.date.accessioned2020-11-17T12:16:04Z
dc.date.available2020-11-17T12:16:04Z
dc.date.issued2020-07-29
dc.date.submitted2020-07-29
dc.identifier.urihttp://hdl.handle.net/10810/48210
dc.description192 p.es_ES
dc.description.abstractModern machine translation relies on strong supervision in the form of parallel corpora. Such arequirement greatly departs from the way in which humans acquire language, and poses a major practicalproblem for low-resource language pairs. In this thesis, we develop a new paradigm that removes thedependency on parallel data altogether, relying on nothing but monolingual corpora to train unsupervisedmachine translation systems. For that purpose, our approach first aligns separately trained wordrepresentations in different languages based on their structural similarity, and uses them to initializeeither a neural or a statistical machine translation system, which is further trained through iterative backtranslation.While previous attempts at learning machine translation systems from monolingual corporahad strong limitations, our work¿along with other contemporaneous developments¿is the first to reportpositive results in standard, large-scale settings, establishing the foundations of unsupervised machinetranslation and opening exciting opportunities for future research.es_ES
dc.language.isoenges_ES
dc.language.isoeuses_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectartificial intelligencees_ES
dc.subjectprogramming languageses_ES
dc.titleItzulpen automatiko gainbegiratu gabeaes_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.holder(c) 2020 MIKEL ARTETXE ZURUTUZA
dc.identifier.studentID631602es_ES
dc.identifier.projectID18769es_ES
dc.departamentoesLenguajes y sistemas informáticoses_ES
dc.departamentoeuHizkuntza eta sistema informatikoakes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record