Show simple item record

dc.contributor.advisorSantana Hermida, Roberto ORCID
dc.contributor.authorNaranjo de las Heras, Rubén
dc.contributor.otherF. INFORMATICA
dc.contributor.otherINFORMATIKA F.
dc.date.accessioned2020-12-04T18:32:12Z
dc.date.available2020-12-04T18:32:12Z
dc.date.issued2020-12-04
dc.identifier.urihttp://hdl.handle.net/10810/48814
dc.description.abstractThis work presents the development of a deep learning model capable of generating and completing musical compositions automatically through generative algorithms of machine learning from a language modeling approach. Throughout the document, different neural network structures are studied and compared from vanilla recurrent neural networks to transformers, and the representation of data is discussed, as well as some design aspects for the creation of a model capable of composing and interpreting musical compositions. The model is trained and tested three times, one for each of the two different datasets and finally one with both together. Then, the three resultant models are discussed and one of them is tested with human subjects to validate the generated musical compositions. The document also presents the design and implementation of a web-interface aimed at non-technical users, to assist them in the creative process of music composition.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectdeep learninges_ES
dc.subjectmachine learninges_ES
dc.subjectmusices_ES
dc.subjectgenerationes_ES
dc.subjecttransformeres_ES
dc.titleMusic composition and interpretation using transformer networkses_ES
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.date.updated2020-06-16T07:33:09Z
dc.language.rfc3066es
dc.rights.holder© 2020, el autor
dc.contributor.degreeGrado en Ingeniería Informática
dc.contributor.degreeInformatika Ingeniaritzako Gradua
dc.identifier.gaurregister105308-795612-10
dc.identifier.gaurassign104773-795612


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record