Show simple item record

dc.contributor.advisorArganda Carreras, Ignacio
dc.contributor.advisorPellejero-Ibáñez, Marcos
dc.contributor.authorAlonso Pérez, Pablo
dc.contributor.otherMáster Universitario en Ingeniería Computacional y Sistemas Inteligentes
dc.contributor.otherKonputazio Ingeniaritza eta Sistema Adimentsuak Unibertsitate Masterra
dc.date.accessioned2022-12-23T09:29:18Z
dc.date.available2022-12-23T09:29:18Z
dc.date.issued2022-12-23
dc.identifier.urihttp://hdl.handle.net/10810/58976
dc.description.abstractDue to physical constrains of an Electron Microscope, capturing high-resolution scans of a subject takes a very long time. On the other hand, running a Gravitational N-body simulation of hundreds of millions of particles, required for state-of-the-art research, takes millions of CPU hours. Thus, in this work we propose a new Image Super-Resolution framework based on Generative Adversarial Networks to super-resolve both images scanned by a microscope and snapshots of gravitational N-body simulations. We incorporate techniques from residual neural networks to increase the learning capabilities, and introduce the Wasserstein GAN training method to improve stability. Comparisons have shown that our model performs equally or better than state-of-the art methods in both of these use cases, and provides balanced results that are realistic but don't have much distortion.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectmachine learninges_ES
dc.subjectneural networkses_ES
dc.subjectimage super resolutiones_ES
dc.subjectWasserstein GANes_ES
dc.titleEvaluation and development of deep neural networks for super-resolution of microscopy and astrophysics imageses_ES
dc.title.alternativeEvaluación y desarrollo de redes neuronales profundas para super-resolución en imágenes de microscopía y astrofísicaes_ES
dc.typeinfo:eu-repo/semantics/masterThesis
dc.date.updated2021-09-15T07:51:30Z
dc.language.rfc3066es
dc.rights.holder© 2022, el autor
dc.contributor.degreeMáster Universitario en Ingeniería Computacional y Sistemas Inteligentes
dc.contributor.degreeKonputazio Ingeniaritza eta Sistema Adimentsuak Unibertsitate Masterra
dc.identifier.gaurregister118635-832879-09es_ES
dc.identifier.gaurassign126478-832879es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record