Show simple item record

dc.contributor.advisorAgirre Bengoa, Eneko ORCID
dc.contributor.advisorLópez de Lacalle Lecuona, Oier ORCID
dc.contributor.authorRomero Mogrovejo, David Orlando
dc.date.accessioned2023-06-30T15:11:48Z
dc.date.available2023-06-30T15:11:48Z
dc.date.issued2023-06-30
dc.identifier.urihttp://hdl.handle.net/10810/61832
dc.description.abstract[EN] Pivoting tasks as entailment problems have shown to be very effective in different applications like question answering and relation extraction. On the other hand, language models trained for entailment tasks have demonstrated to be very effective in settings with small training sets and have better generalization abilities. In view of this, in this work we recast text classification as an entailment problem, specifically, I build PET-NLI, an approach that uses the same architecture and training procedure as Pet (Pattern-Encoding Training), but in this case using natural language inference (NLI) models. Overall, PET-NLI shows to have the same benefits of PET for true few-shot scenarios despite using a different type of language model. This approach is tested on true-few shot scenarios of the RAFT benchmark. As a result, PET-NLI outperforms bigger models like GPT-3 and achieves competitive performances when it is compared with the original PET architecture and the Human Baseline.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectTFM Language Analysis and Processinges_ES
dc.titleNatural Language Inference Models for Few-Shot Text Classification: A Real-World Perspectivees_ES
dc.typeinfo:eu-repo/semantics/masterThesis
dc.date.updated2023-02-09T11:17:24Z
dc.language.rfc3066es
dc.rights.holder© 2023, el autor
dc.contributor.degreeMáster Universitario en Análisis y Procesamiento del Lenguaje
dc.contributor.degreeHizkuntzaren Azterketa eta Prozesamendua Unibertsitate Masterra
dc.identifier.gaurregister128934-1074795-05es_ES
dc.identifier.gaurassign148224-1074795es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record