Show simple item record

dc.contributor.advisorGarcía Marina, Vanesa
dc.contributor.authorPapadopoulos, Dimitrios Iason
dc.contributor.otherE.U.I.T. INDUSTRIAL - E I.T. TOPOGRAFIA -VITORIA
dc.contributor.otherGASTEIZKO INGENIARITZAKO U.E.
dc.date.accessioned2023-11-30T17:07:41Z
dc.date.available2023-11-30T17:07:41Z
dc.date.issued2023-11-30
dc.identifier.urihttp://hdl.handle.net/10810/63292
dc.description[92] p. -- Bibliogr.: p. [60-62]
dc.description.abstractIn this diploma thesis, different techniques of Predictive Maintenance based on Machine Learning are compared. In particular, the Remaining Useful Life of a ball bearing of the shaft of a Wind Turbine was predicted with different methods: Classification algorithms, degradation models and real time updates using a Kalman Filter. In the first half, the theory of ball bearing failure mechanisms, predictive maintenance and machine learning is analyzed. At the second half, different methods are implemented for the prediction of the remaining useful life. Last, the writer comes to a conclusion about the efficiency of each method.en
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subjectmachine learning
dc.subjectpredictive maintenance
dc.subjectremaining useful life
dc.subjectdegradation models
dc.subjectclassification
dc.subjectKalman filter
dc.titleMachine learning methods for predictive maintenance using real-time data and time-frequency analysises_ES
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.date.updated2023-05-26T07:08:29Z
dc.language.rfc3066es
dc.rights.holder© 2023, el autor
dc.contributor.degreeGrado en Ingeniería Mecánica
dc.contributor.degreeIngeniaritza Mekanikoko Gradua
dc.identifier.gaurregister130713-1148338-09es_ES
dc.identifier.gaurassign151127-1148338es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2023, el autor
Except where otherwise noted, this item's license is described as © 2023, el autor