Show simple item record

dc.contributor.advisorPascual Saiz, José Antonio ORCID
dc.contributor.authorSainz de la Maza Gamboa, Unai
dc.contributor.otherMáster Universitario en Ingeniería Computacional y Sistemas Inteligentes
dc.contributor.otherKonputazio Ingeniaritza eta Sistema Adimentsuak Unibertsitate Masterra
dc.date.accessioned2024-07-09T07:17:53Z
dc.date.available2024-07-09T07:17:53Z
dc.date.issued2024-07-09
dc.identifier.urihttp://hdl.handle.net/10810/68846
dc.description.abstractAs the demand for deploying machine learning models on resource-constrained devices grows, neural network compression has become an important area of research. Tensor decomposition is a promising technique for compressing neural networks, as it enables the representation of the network weights in a lower-dimensional format, while maintaining their accuracy and performance. In this work, we explore the application of tensor decomposition techniques, including Canonical Polyadic decomposition, Tucker decomposition, and Tensor Train decomposition, for neural network compression. We provide an exhaustive overview of the various tensor decomposition methods and compare their performance in terms of compression rates and accuracy. We implement and evaluate the different compression methods on the benchmark dataset CIFAR-10, using popular models such as ResNet and VGG. Our results show that tensor decomposition can significantly reduce the number of parameters of neural networks, while reducing minimally their accuracy. Finally, we discuss the challenges and opportunities of using tensor decomposition for neural network compression and highlight some open research questions in this field.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subjecttensor decompositiones_ES
dc.subjectneural networks compressiones_ES
dc.titleTensor Decompositions for Neural Networks Compressiones_ES
dc.typeinfo:eu-repo/semantics/masterThesis
dc.date.updated2023-07-10T08:19:22Z
dc.language.rfc3066es
dc.rights.holderAtribución-NoComercial-CompartirIgual 3.0 España
dc.identifier.gaurregister134677-884132-10es_ES
dc.identifier.gaurassign153964-884132es_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-CompartirIgual 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 3.0 España