Show simple item record

dc.contributor.authorArtetxe Zurutuza, Mikel
dc.contributor.authorLabaka Intxauspe, Gorka ORCID
dc.contributor.authorAgirre Bengoa, Eneko ORCID
dc.date.accessioned2024-10-16T15:41:09Z
dc.date.available2024-10-16T15:41:09Z
dc.date.issued2020
dc.identifier.citationProceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) : 7674-7684 (2020)es_ES
dc.identifier.urihttp://hdl.handle.net/10810/69978
dc.description.abstractBoth human and machine translation play a central role in cross-lingual transfer learning: many multilingual datasets have been created through professional translation services, and using machine translation to translate either the test set or the training set is a widely used transfer technique. In this paper, we show that such translation process can introduce subtle artifacts that have a notable impact in existing cross-lingual models. For instance, in natural language inference, translating the premise and the hypothesis independently can reduce the lexical overlap between them, which current models are highly sensitive to. We show that some previous findings in cross-lingual transfer learning need to be reconsidered in the light of this phenomenon. Based on the gained insights, we also improve the state-of-the-art in XNLI for the translate-test and zero-shot approaches by 4.3 and 2.8 points, respectively.es_ES
dc.description.sponsorshipThis research was partially funded by a Facebook Fellowship, the Basque Government excellence research group (IT1343-19), the Spanish MINECO (UnsupMT TIN2017-91692-EXP-MCIU/AEI/FEDER, UE), Project BigKnowledge (Ayudas Fundacion BBVA a equipos de investigación científica 2018), and the NVIDIA GPU grant program and the BETTER Program contract #2019-19051600006 (ODNI, IARPA activity).es_ES
dc.language.isoenges_ES
dc.publisherACLes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.titleTranslation Artifacts in Cross-lingual Transfer Learninges_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holder(c)2020 The Association for Computational Linguistics, licensed on a Creative Commons Attribution 4.0 International Licensees_ES
dc.relation.publisherversionhttps://doi.org/10.18653/v1/2020.emnlp-main.618es_ES
dc.identifier.doi10.18653/v1/2020.emnlp-main.618
dc.departamentoesLenguajes y sistemas informáticoses_ES
dc.departamentoeuHizkuntza eta sistema informatikoakes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

(c)2020 The Association for Computational Linguistics, licensed on a Creative Commons Attribution 4.0 International License
Except where otherwise noted, this item's license is described as (c)2020 The Association for Computational Linguistics, licensed on a Creative Commons Attribution 4.0 International License