Show simple item record

dc.contributor.authorGarciarena Hualde, Unai ORCID
dc.contributor.authorMendiburu Alberro, Alexander
dc.contributor.authorSantana Hermida, Roberto ORCID
dc.date.accessioned2025-01-17T19:08:54Z
dc.date.available2025-01-17T19:08:54Z
dc.date.issued2018-07-02
dc.identifier.citationGECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference : 434 - 441 (2018)es_ES
dc.identifier.isbn978-1-4503-5618-3
dc.identifier.urihttp://hdl.handle.net/10810/71532
dc.description.abstractIn machine learning, generative models are used to create data samples that mimic the characteristics of the training data. Generative adversarial networks (GANs) are neural-network based generator models that have shown their capacity to produce realistic samples in different domains. In this paper we propose a neuro-evolutionary approach for evolving deep GAN architectures together with the loss function and generator-discriminator synchronization parameters. We also propose the problem of Pareto set (PS) approximation as a suitable benchmark to evaluate the quality of neural-network based generators in terms of the accuracy of the solutions they generate. The covering of the Pareto front (PF) by the generated solutions is used as an indicator of the mode-collapsing behavior of GANs. We show that it is possible to evolve GANs that generate good PS approximations. Our method scales to up to 784 variables and that it is capable to create architecture transferable across dimensions and functions.es_ES
dc.description.sponsorshipBasque Government: IT-609-13, Spanish Ministry of Economy, Industry and Competitiveness: TIN2016-78365-R, University of the Basque Country: PIF16/238es_ES
dc.language.isoenges_ES
dc.publisherACMes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectMachine learninges_ES
dc.subjectGenerative adversarial networkes_ES
dc.subjectNeuroevolutiones_ES
dc.titleEvolved GANs for generating Pareto set approximationses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holder© 2018 Association for Computing Machineryes_ES
dc.relation.publisherversionhttps://doi.org/10.1145/3205455.320555es_ES
dc.identifier.doi10.1145/3205455.3205550
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record