Show simple item record

dc.contributor.authorPicón Ruiz, Artzai ORCID
dc.contributor.authorGhita, Ovidiu
dc.contributor.authorRodríguez Vaamonde, Sergio
dc.contributor.authorIriondo Bengoa, Pedro María ORCID
dc.contributor.authorWhelan, Paul F.
dc.date.accessioned2014-02-20T19:21:40Z
dc.date.available2014-02-20T19:21:40Z
dc.date.issued2011
dc.identifier.citationEurasip Journal on Advances in Signal Processing 2011 : (2011) // Article n. 66es
dc.identifier.issn1687-6180
dc.identifier.urihttp://hdl.handle.net/10810/11598
dc.description.abstractHyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classificationes
dc.language.isoenges
dc.publisherSpringeres
dc.rightsinfo:eu-repo/semantics/openAccesses
dc.subjecthyper spectral dataes
dc.subjectfeature extractiones
dc.subjectfuzzy setses
dc.subjectmaterial classificationes
dc.titleBiologically-inspired data decorrelation for hyper-spectral imaginges
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© Picón et al; licensee Springer. 2011 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.es
dc.relation.publisherversionhttp://link.springer.com/article/10.1186%2F1687-6180-2011-66es
dc.identifier.doi10.1186/1687-6180-2011-66
dc.departamentoesIngeniería de sistemas y automáticaes_ES
dc.departamentoeuSistemen ingeniaritza eta automatikaes_ES
dc.subject.categoriaSIGNAL PROCESSING


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record