Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material
dc.contributor.author | Angulo Ibáñez, Adrián | |
dc.contributor.author | Beobide Pacheco, Garikoitz ![]() | |
dc.contributor.author | Castillo García, Oscar ![]() | |
dc.contributor.author | Luque Arrebola, Antonio ![]() | |
dc.contributor.author | Pérez Yáñez, Sonia ![]() | |
dc.contributor.author | Vallejo Sánchez, Daniel | |
dc.date.accessioned | 2018-02-08T11:32:27Z | |
dc.date.available | 2018-02-08T11:32:27Z | |
dc.date.issued | 2016-01-15 | |
dc.identifier.citation | Polymers 8(1) : (2016) // Article ID 16 | es_ES |
dc.identifier.issn | 2073-4360 | |
dc.identifier.uri | http://hdl.handle.net/10810/24906 | |
dc.description.abstract | The processing of an originally non- porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal- organic porous materials, conceptually different to conventional crystalline porous coordination polymer ( PCPs) or metal- organic frameworks ( MOFs). Although the work herein reported is focused upon a particular kind of coordination polymer ([ M( mu - ox)( 4- apy) 2] n, M: Co( II), Ni( II)), the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post- processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/ macroporous regions which endow to these materials the ability to deal with large- sized molecules. The aerogel monoliths present markedly low densities ( 0.082- 0.311 g center dot cm - 3), an aspect of interest for applications that persecute light materials. | es_ES |
dc.description.sponsorship | This work has been funded by Ministerio de Economia y Competitividad (MAT2013-46502-C2-1-P), Eusko Jaurlaritza/Gobierno Vasco (Grant IT477-10) and Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (EHUA14/09, UFI 11/53, postdoctoral fellowship for Sonia Perez-Yanez). Technical and human support provided by SGIKer (UPV/EHU, MINECO, GV/EJ, ERDF, and ESF) is gratefully acknowledged. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation | info:eu-repo/grantAgreement/MINECO/MAT2013-46502-C2-1-P | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.subject | aerogel | es_ES |
dc.subject | porosity | es_ES |
dc.subject | metal-organic aerogel | es_ES |
dc.subject | coordination polymer | es_ES |
dc.subject | metal-organic framework | es_ES |
dc.subject | MOA | es_ES |
dc.subject | PCP | es_ES |
dc.subject | MOF | es_ES |
dc.subject | framework materials | es_ES |
dc.subject | ab-initio | es_ES |
dc.subject | adsorption | es_ES |
dc.subject | chemistry | es_ES |
dc.subject | CO2 | es_ES |
dc.subject | design | es_ES |
dc.subject | ligand | es_ES |
dc.title | Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.holder | © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). | es_ES |
dc.rights.holder | Atribución 3.0 España | |
dc.relation.publisherversion | http://www.mdpi.com/2073-4360/8/1/16 | es_ES |
dc.identifier.doi | 10.3390/polym8010016 | |
dc.departamentoes | Química inorgánica | es_ES |
dc.departamentoeu | Kimika ez-organikoa | es_ES |
Files in this item
This item appears in the following Collection(s)
Except where otherwise noted, this item's license is described as © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).