SREBP-2-driven transcriptional activation of human SND1 oncogene
View/ Open
Date
2017-12-08Author
Armengol López, Sandra
Arretxe Oliden, Enara
Enzunza, Leire
Llorente, Irati
Mendibil, Unai
Navarro Imaz, Hiart
Ochoa Olascoaga, Begoña
Chico Carmona, Yolanda
Metadata
Show full item record
Oncotarget 8(64) : 108181-108194 (2017)
Abstract
Upregulation of Staphylococcal nuclease and tudor domain containing 1 (SND1) is linked to cancer progression and metastatic spread. Increasing evidence indicates that SND1 plays a role in lipid homeostasis. Recently, it has been shown that SND1-overexpressing hepatocellular carcinoma cells present an increased de novo cholesterol synthesis and cholesteryl ester accumulation. Here we reveal that SND1 oncogene is a novel target for SREBPs. Exposure of HepG2 cells to the cholesterol-lowering drug simvastatin or to a lipoprotein-deficient medium triggers SREBP-2 activation and increases SND1 promoter activity and transcript levels. Similar increases in SND1 promoter activity and mRNA are mimicked by overexpressing nuclear SREBP-2 through expression vector transfection. Conversely, SREBP-2 suppression with specific siRNA or the addition of cholesterol/25-hydroxycholesterol to cell culture medium reduces transcriptional activity of SND1 promoter and SND1 mRNA abundance. Chromatin immunoprecipitation assays and site-directed mutagenesis show that SREBP-2 binds to the SND1 proximal promoter in a region containing one SRE and one E-box motif which are critical for maximal transcriptional activity under basal conditions. SREBP-1, in contrast, binds exclusively to the SRE element. Remarkably, while ectopic expression of SREBP-1c or -1a reduces SND1 promoter activity, knocking-down of SREBP-1 enhances SND1 mRNA and protein levels but failed to affect SND1 promoter activity. These findings reveal that SREBP-2 and SREBP-1 bind to specific sites in SND1 promoter and regulate SND1 transcription in opposite ways; it is induced by SREBP-2 activating conditions and repressed by SREBP-1 overexpression. We anticipate the contribution of a SREBPs/SND1 pathway to lipid metabolism reprogramming of human hepatoma cells.
Collections
Except where otherwise noted, this item's license is described as Armengol et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License
3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.