Show simple item record

dc.contributor.authorGoienetxea Urkizu, Izaro
dc.contributor.authorMartínez Otzeta, José María
dc.contributor.authorSierra Araujo, Basilio ORCID
dc.contributor.authorMendialdua Beitia, Iñigo ORCID
dc.date.accessioned2018-11-14T11:33:11Z
dc.date.available2018-11-14T11:33:11Z
dc.date.issued2018-02-14
dc.identifier.citationPloS One 13 : (2018) // Article ID e0191417es_ES
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/10810/29649
dc.description.abstractMusic genre classification is a challenging research concept, for which open questions remain regarding classification approach, music piece representation, distances between/within genres, and so on. In this paper an investigation on the classification of generated music pieces is performed, based on the idea that grouping close related known pieces in different sets -or clusters- and then generating in an automatic way a new song which is somehow "inspired" in each set, the new song would be more likely to be classified as belonging to the set which inspired it, based on the same distance used to separate the clusters. Different music pieces representations and distances among pieces are used; obtained results are promising, and indicate the appropriateness of the used approach even in a such a subjective area as music genre classification is.es_ES
dc.description.sponsorshipThis work was supported by IT900-16 Research Team from the Basque Government.es_ES
dc.language.isoenges_ES
dc.publisherPublic Library Sciencees_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectmultiple viewpoint systemses_ES
dc.subjectalgorithmic compositiones_ES
dc.titleTowards the Use of Similarity Distances to Music Genre Classification: a Comparative Studyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holderCopyright: © 2018 Goienetxea et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Attribution 4.0 International (CC BY 4.0)es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0191417es_ES
dc.identifier.doi10.1371/journal.pone.0191417
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoesLenguajes y sistemas informáticoses_ES
dc.departamentoeuHizkuntza eta sistema informatikoakes_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Copyright: © 2018 Goienetxea et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Copyright: © 2018 Goienetxea et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Attribution 4.0 International (CC BY 4.0)