Show simple item record

dc.contributor.authorCárdenas-López, F. A.
dc.contributor.authorLamata Manuel, Lucas ORCID
dc.contributor.authorRetamal, Juan Carlos
dc.contributor.authorSolano Villanueva, Enrique Leónidas ORCID
dc.date.accessioned2018-11-26T14:01:06Z
dc.date.available2018-11-26T14:01:06Z
dc.date.issued2018-07-19
dc.identifier.citationPLOS ONE 13(7) : (2018) // Article ID e0200455es_ES
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/10810/29786
dc.description.abstractWe propose a protocol to perform quantum reinforcement learning with quantum technologies. At variance with recent results on quantum reinforcement learning with superconducting circuits, in our current protocol coherent feedback during the learning process is not required, enabling its implementation in a wide variety of quantum systems. We consider diverse possible scenarios for an agent, an environment, and a register that connects them, involving multiqubit and multilevel systems, as well as open-system dynamics. We finally propose possible implementations of this protocol in trapped ions and superconducting circuits. The field of quantum reinforcement learning with quantum technologies will enable enhanced quantum control, as well as more efficient machine learning calculations.es_ES
dc.description.sponsorshipWe acknowledge support from CEDENNA basal grant No. FB0807 and Direccion de Postgrado USACH (FAC-L), FONDECYT under grant No. 1140194 (JCR), Spanish MINECO/FEDER FIS2015-69983-P and Basque Government IT986-16 (LL and ES), and Ramon y Cajal Grant RYC-2012-11391 (LL).es_ES
dc.language.isoenges_ES
dc.publisherPublic Library Sciencees_ES
dc.relationinfo:eu-repo/grantAgreement/MINECO/FIS2015-69983-Pes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjecttrapped ionses_ES
dc.subjectsuperconducting circuitses_ES
dc.subjectqubitses_ES
dc.subjectmachinees_ES
dc.subjectmemoryes_ES
dc.subjectgateses_ES
dc.titleMultiqubit and multilevel quantum reinforcement learning with quantum technologieses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.holder© 2018 Cárdenas-López et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.es_ES
dc.rights.holderAtribución 3.0 España*
dc.relation.publisherversionhttps://journals.plos.org/plosone/article?id=10.1371/journal.pone.0200455es_ES
dc.identifier.doi10.1371/journal.pone.0200455
dc.departamentoesQuímica físicaes_ES
dc.departamentoeuKimika fisikoaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2018 Cárdenas-López et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Except where otherwise noted, this item's license is described as © 2018 Cárdenas-López et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.