Show simple item record

dc.contributor.authorArmañanzas Arnedillo, Rubén
dc.contributor.authorInza Cano, Iñaki ORCID
dc.contributor.authorSantana Hermida, Roberto ORCID
dc.contributor.authorSaeys, Yvan
dc.contributor.authorFlores Barroso, Jose Luis
dc.contributor.authorLozano Alonso, José Antonio
dc.contributor.authorVan de Peer, Yves
dc.contributor.authorBlanco, Rosa
dc.contributor.authorRobles Forcada, Víctor
dc.contributor.authorBielza, Concha
dc.contributor.authorLarrañaga Múgica, Pedro
dc.date.accessioned2019-04-15T18:44:41Z
dc.date.available2019-04-15T18:44:41Z
dc.date.issued2008-09-11
dc.identifier.citationBioData Mining 1 : (2008) // Article ID 6es_ES
dc.identifier.issn1756-0381
dc.identifier.urihttp://hdl.handle.net/10810/32491
dc.description.abstractEvolutionary search algorithms have become an essential asset in the algorithmic toolbox for solving high-dimensional optimization problems in across a broad range of bioinformatics problems. Genetic algorithms, the most well-known and representative evolutionary search technique, have been the subject of the major part of such applications. Estimation of distribution algorithms (EDAs) offer a novel evolutionary paradigm that constitutes a natural and attractive alternative to genetic algorithms. They make use of a probabilistic model, learnt from the promising solutions, to guide the search process. In this paper, we set out a basic taxonomy of EDA techniques, underlining the nature and complexity of the probabilistic model of each EDA variant. We review a set of innovative works that make use of EDA techniques to solve challenging bioinformatics problems, emphasizing the EDA paradigm's potential for further research in this domain.es_ES
dc.description.sponsorshipThis work has been partially supported by the 2007-2012 Etortek, Saiotek and Research Group (IT-242-07) programs (Basque Government), TIN2005-03824 and Consolider Ingenio 2010-CSD2007-00018 projects (Spanish Ministry of Education and Science) and the COMBIOMED network in computational biomedicine (Carlos III Health Institute).es_ES
dc.language.isoenges_ES
dc.publisherBiomed Centrales_ES
dc.relationinfo:eu-repo/grantAgreement/MEC/2010-CSD2007-00018es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subjectfeature-selectiones_ES
dc.subjectmolecular classificationes_ES
dc.subjectgene interactionses_ES
dc.subjectfeature rankinges_ES
dc.subjectpredictiones_ES
dc.subjectoptimizationes_ES
dc.subjectnetworkses_ES
dc.subjectcanceres_ES
dc.titleA Review of Estimation of Distribution Algorithms in Bioinformaticses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherversionhttps://biodatamining.biomedcentral.com/articles/10.1186/1756-0381-1-6es_ES
dc.identifier.doi10.1186/1756-0381-1-6
dc.departamentoesCiencia de la computación e inteligencia artificiales_ES
dc.departamentoeuKonputazio zientziak eta adimen artifizialaes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record